4,650
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Flows and sediment dynamics in the Ganga River under present and future climate scenarios

, , , , &
Pages 763-782 | Received 20 Aug 2017, Accepted 03 Jan 2018, Published online: 09 Apr 2018

References

  • Abbas, N. and Subramanian, V., 1984. Erosion and sediment transport in the Ganges river basin (India). Journal of Hydrology, 69 (1–4), 173–182. doi:10.1016/0022-1694(84)90162-8
  • Ashmore, P.E., 1982. Laboratory modelling of gravel braided stream morphology. Earth Surface Processes and Landforms, 7 (3), 201–225. doi:10.1002/esp.3290070301
  • Ashmore, P.E., 1991. How do gravel-bed rivers braid? Canadian Journal of Earth Sciences, 28 (3), 326–341. doi:10.1139/e91-030
  • Bharati, L., et al., 2011. The impacts of water infrastructure and climate change on the hydrology of the Upper Ganges River Basin. Vol. 142. Colombo: IWMI.
  • Borah, D.K., 1989. Sediment discharge model for small watersheds. Transactions of the ASAE, 32 (3), 874–0880. doi:10.13031/2013.31084
  • Brierley, G.J. and Fryirs, K.A., 2013. Geomorphology and river management: applications of the river styles framework. New Jersey: John Wiley & Sons.
  • Bussi, G., et al., 2016. Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). Journal of Hydrology, 542, 357–372. doi:10.1016/j.jhydrol.2016.09.010
  • Caesar, J., et al., 2015. Temperature and precipitation projections over Bangladesh and the upstream Ganges, Brahmaputra and Meghna systems. Environmental Science: Processes & Impacts, 17 (6), 1047–1056.
  • Chakrapani, G.J. and Subramanian, V., 1993. Rates of erosion and sedimentation in the Mahanadi river basin, India. Journal of Hydrology, 149 (1–4), 39–48. doi:10.1016/0022-1694(93)90098-T
  • Coleman, J.M., 1969. Brahmaputra River: channel processes and sedimentation. Sedimentary Geology, 3 (2–3), 129–239. doi:10.1016/0037-0738(69)90010-4
  • Darby, S.E., et al., 2015. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges–brahmaputra–Meghna delta. Environmental Science: Processes & Impacts, 17 (9), 1587–1600.
  • De Vente, J. and Poesen, J., 2005. Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Science Reviews, 71 (1–2), 95–125. doi:10.1016/j.earscirev.2005.02.002
  • Dettinger, M.D. and Diaz, H.F., 2000. Global characteristics of stream flow seasonality and variability. Journal of Hydrometeorology, 1 (4), 289–310. doi:10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2
  • Ebisemiju, F.S., 1990. Sediment delivery ratio prediction equations for short catchment slopes in a humid tropical environment. Journal of Hydrology, 114 (1–2), 191–208. doi:10.1016/0022-1694(90)90081-8
  • Ferguson, R.I., 1993. Understanding braiding processes in gravel-bed rivers: progress and unsolved problems. Geological Society, London, Special Publications, 75 (1), 73–87. doi:10.1144/GSL.SP.1993.075.01.03
  • Fryirs, K.A., 2017. River sensitivity: a lost foundation concept in fluvial geomorphology. Earth Surface Processes and Landforms, 42 (1), 55–70. doi:10.1002/esp.v42.1
  • Futter, M.N., et al., 2014. PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrology and Earth System Sciences, 18 (2), 855–873. doi:10.5194/hess-18-855-2014
  • Futter, M.N., et al., 2015. Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST. Environmental Science: Processes & Impacts, 17 (6), 1070–1081.
  • Gosain, A.K., Aggarwal, P.K., and Rao, S., 2011. Linking water and agriculture in river basins: impacts of climate change. Unpublished Report.
  • Gosain, A.K., Rao, S., and Basuray, D., 2006. Climate change impact assessment on hydrology of Indian river basins. Current Science, 90 (3), 346–353.
  • Gourdji, S.M., et al., 2008. Modelling the interlinking of the Ganges River: simulated changes in flow. Chapter 7. In: M. Mirza and Q. Ahmed, eds. Interlinking of rivers in India: issues and concerns. London: CRC Press, Taylor and Francis, 107–128.
  • Hopson, T.M. and Webster, P.J., 2010. A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07. Journal of Hydrometeorology, 11 (3), 618–641. doi:10.1175/2009JHM1006.1
  • Hossain, M.M., 1991. Total sediment load in the lower Ganges and Jumuna. Thesis. Bangladesh University of Engineering and Technology.
  • Hovius, N., 1998. Controls on sediment supply by large rivers. In: K.W. Shanley and P.J. McCable, eds. Relative role of eustasy, climate and tectonism in continental rocks. Tulsa, OK: Society of Economic Paleontologists and Mineralogists, Special Publication 59, 3–16.
  • IPCC (Intergovernmental Panel on Climate Change), 2001. Climate change: the scientific basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovermental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change), 2014. Impacts, adaptation and vulnerability: global and sectoral aspects. Contribution of Working Group 2 to the Fifth Assessment Report of the Intergovermental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
  • Islam, M.R., et al., 1999. The Ganges and Brahmaputra rivers in Bangladesh: basin denudation and sedimentation. Hydrological Processes, 13 (17), 2907–2923. doi:10.1002/(ISSN)1099-1085
  • Jackson-Blake, L.A., et al., 2016. The INtegrated CAtchment model of phosphorus dynamics (INCA-P): description and demonstration of new model structure and equations. Environmental Modelling & Software, 83, 356–386. doi:10.1016/j.envsoft.2016.05.022
  • Jain, V. and Sinha, R., 2004. Fluvial dynamics of an anabranching river system in Himalayan foreland basin, Baghmati river, north Bihar plains, India. Geomorphology, 60 (1–2), 147–170. doi:10.1016/j.geomorph.2003.07.008
  • Jin, L., et al., 2015. Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga River system. Environmental Science: Processes & Impacts, 17 (6), 1098–1110.
  • Kale, V.S., et al., 1994. Geomorphic and hydrologic aspects of monsoon floods on the Narmada and Tapi Rivers in central India. Geomorphology, 10 (1–4), 157–168. doi:10.1016/0169-555X(94)90014-0
  • Knisel, W.G., 1980. CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems [USA]. Washington, DC: US Department of Agriculture, Conservation Research Report.
  • Lacy, S., 2006. Modeling the efficacy of the Ganga Action Plan’s restoration of the Ganga River, India. Doctoral dissertation. University of Michigan, USA.
  • Lane, E.W., 1955. Importance of fluvial morphology in hydraulic engineering. Proceedings (American Society of Civil Engineers), 81 (745).
  • Latrubesse, E.M., Stevaux, J.C., and Sinha, R., 2005. Tropical rivers. Geomorphology, 70 (3–4), 187–206. doi:10.1016/j.geomorph.2005.02.005
  • Lazar, A.N., et al., 2010. An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries. Science of the Total Environment, 408 (12), 2555–2566. doi:10.1016/j.scitotenv.2010.02.030
  • Lisenby, P.E. and Fryirs, K.A., 2016. Catchment‐ and reach‐scale controls on the distribution and expectation of geomorphic channel adjustment. Water Resources Research, 52 (5), 3408–3427. doi:10.1002/2015WR017747
  • Maheshwari, B.L., Walker, K.F., and McMahon, T.A., 1995. Effects of regulation on the flow regime of the River Murray, Australia. River Research and Applications, 10 (1), 15–38.
  • Meade, R.H., 1982. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90 (3), 235–252. doi:10.1086/628677
  • Milliman, J.D. and Syvitski, J.P., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100 (5), 525–544. doi:10.1086/629606
  • Moss, R.H., et al., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463 (7282), 747–756. doi:10.1038/nature08823
  • Pandey, A., et al., 2008. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. Journal of Hydrology, 348 (3–4), 305–319. doi:10.1016/j.jhydrol.2007.10.010
  • Quilbé, R. and Rousseau, A.N., 2007. GIBSI: an integrated modelling system for watershed management? Sample applications and current developments. Hydrology and Earth System Sciences Discussions, 4 (3), 1301–1335. doi:10.5194/hessd-4-1301-2007
  • Raje, D., Priya, P., and Krishnan, R., 2014. Macroscale hydrological modelling approach for study of large scale hydrologic impacts under climate change in Indian river basins. Hydrological Processes, 28 (4), 1874–1889. doi:10.1002/hyp.9731
  • Rogelj, J., Meinshausen, M., and Knutti, R., 2012. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2 (4), 248–253. doi:10.1038/nclimate1385
  • Rudra, K., 2006. Shifting of the Ganga and land erosion in West Bengal: a socio-ecological viewpoint. Kolkata: Centre for Development and Environment Policy.
  • Rudra, K., 2010. Dynamics of the Ganga in West Bengal, India (1764–2007): implications for science–policy interaction. Quaternary International, 227 (2), 161–169. doi:10.1016/j.quaint.2009.10.043
  • Schumm, S.A., 1977. The fluvial system. NY: John Wiley.
  • Sharma, B.R., Amarasinghe, U.A., and Ambili, G.K., 2010. Tackling water and food crisis in South Asia: Insights from the Indo-Gangetic Basin. Synthesis Report of the Basin Focal Project for the Indo-Gangetic Basin. Colombo, Sri Lanka: CGIAR Challenge Program on Water and Food (CPWF).
  • Singh, R., Tiwari, K.N., and Mal, B.C., 2006. Hydrological studies for small watershed in India using the ANSWERS model. Journal of Hydrology, 318 (1–4), 184–199. doi:10.1016/j.jhydrol.2005.06.011
  • Singh, R.K., et al., 2011. Simulation of runoff and sediment yield from a hilly watershed in the eastern Himalaya, India using the WEPP model. Journal of Hydrology, 405 (3–4), 261–276. doi:10.1016/j.jhydrol.2011.05.022
  • Singh, S.K., 1988. Nature of chemical and sediment load in the Ganges River between Sone and Kosi. PhD Thesis. Jawaharlal Nehru University, New Delhi.
  • Sinha, R., et al., 2008. Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of analytical hierarchy process (AHP). Journal of the Indian Society of Remote Sensing, 36 (4), 335–349. doi:10.1007/s12524-008-0034-y
  • Sinha, R., 2009. The great avulsion of Kosi on 18 August 2008. Current Science, 97 (3), 429–433.
  • Sinha, R. and Friend, P.F., 1994. River systems and their sediment flux, Indo‐Gangetic plains, Northern Bihar, India. Sedimentology, 41 (4), 825–845. doi:10.1111/sed.1994.41.issue-4
  • Sinha, R. and Ghosh, S., 2012. Understanding dynamics of large rivers aided by satellite remote sensing: a case study from Lower Ganga plains, India. Geocarto International, 27 (3), 207–219. doi:10.1080/10106049.2011.620180
  • Sinha, R. and Jain, V., 1998. Flood hazards of north Bihar rivers, Indo-Gangetic plains. Memoirs-Geological Society of India, (41), 27–52.
  • Sinha, R. and Sarkar, S., 2009. Climate-induced variability in the Late Pleistocene–holocene fluvial and fluvio-deltaic successions in the Ganga plains, India: a synthesis. Geomorphology, 113 (3–4), 173–188. doi:10.1016/j.geomorph.2009.03.011
  • Spear, R.C. and Hornberger, G.M., 1980. Eutrophication in Peel Inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Research, 14 (1), 43–49. doi:10.1016/0043-1354(80)90040-8
  • Subramanian, V., 1979. Chemical and suspended-sediment characteristics of rivers of India. Journal of Hydrology, 44 (1–2), 37–55. doi:10.1016/0022-1694(79)90145-8
  • Subramanian, V., 1996. The sediment load of Indian rivers – an update. In: D.E. Walling and B.W. Webb, eds., Erosion and sediment yield: Global and regional perspectives (Exeter Symposium). Wallingford, UK: International Associaion of Hydrological Sciences, IAHS Publ. vol. 236, 183–189. Available from: https://iahs.info/uploads/dms/iahs_236_0183.pdf [ Accessed 24 February 2018].
  • Syvitski, J.P., 2003. Supply and flux of sediment along hydrological pathways: research for the 21st century. Global and Planetary Change, 39 (1–2), 1–11. doi:10.1016/S0921-8181(03)00008-0
  • Tare, V., et al., 2017. Eco-geomorphological approach for environmental flow assessment in monsoon-driven Highland rivers: a case study of the Upper Ganga, India. Journal of Hydrology: Regional Studies, 13, 110–121.
  • Thorne, C.R., 2002. Geomorphic analysis of large alluvial rivers. Geomorphology, 44 (3–4), 203–219. doi:10.1016/S0169-555X(01)00175-1
  • Verisk Maplecroft, 2011. Climate change vulnerability index 2016. Bath, UK: Verisk Maplecroft.
  • Vogel, R.M., and Fennessey, N.M., 1995. Flow duration curves II. Water Resources Bulletin, 31, 1029–1039.
  • Wade, A.J., Whitehead, P.G., and Butterfield, D., 2002. The Integrated CAtchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations. Hydrology and Earth System Sciences Discussions, 6 (3), 583–606. doi:10.5194/hess-6-583-2002
  • Walling, D.E., 1983. The sediment delivery problem. Journal of Hydrology, 65 (1–3), 209–237. doi:10.1016/0022-1694(83)90217-2
  • Wasson, R.J., 2003. A sediment budget for the Ganga–Brahmaputra catchment. Current Science, 84 (8), 1041–1047.
  • Wells, N.A. and Dorr, J.A., 1987. Shifting of the Kosi river, northern India. Geology, 15 (3), 204–207. doi:10.1130/0091-7613(1987)15<204:SOTKRN>2.0.CO;2
  • Wheaton, J.M., et al., 2013. Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel‐bed river. Journal of Geophysical Research: Earth Surface, 118 (2), 759–779.
  • Whitehead, P.G., et al., 2015a. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. Environmental Science: Processes & Impacts, 17 (6), 1057–1069.
  • Whitehead, P.G., et al., 2015b. Dynamic modelling of multiple phytoplankton groups in rivers with an application to the Thames river system in the UK. Environmental Modelling & Software, 74, 75–91. doi:10.1016/j.envsoft.2015.09.010
  • Whitehead, P.G., et al., 2015c. Dynamic modeling of the Ganga River system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environmental Science: Processes & Impacts, 17 (6), 1082–1097.
  • Whitehead, P.G., Wilson, E.J., and Butterfield, D., 1998. A semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part I—model structure and process equations. Science of the Total Environment, 210, 547–558. doi:10.1016/S0048-9697(98)00037-0
  • Williams, J.R., 1980. SPNM, a model for predicting sediment, phosphorus, and nitrogen yields from agricultural basins. JAWRA Journal of the American Water Resources Association, 16 (5), 843–848. doi:10.1111/jawr.1980.16.issue-5
  • Wolman, M.G., 1977. Changing needs and opportunities in the sediment field. Water Resources Research, 13 (1), 50–54. doi:10.1029/WR013i001p00050
  • World Bank, 2012. Ganges strategic basin assessment: a discussion of regional opportunities and risks, March 2012. Washington, DC: World Bank.
  • Young, P., Parkinson, S., and Lees, M., 1996. Simplicity out of complexity in environmental modelling: Occam’s razor revisited. Journal of Applied Statistics, 23 (2–3), 165–210. doi:10.1080/02664769624206
  • Young, R.A., Onstad, C.A., and Bosch, D.D., 1995. AGNPS: an agricultural nonpoint source model. In: V.P. Singh, ed. Computermodels of watershed hydrology. Highlands Ranch, CO: WRP, 1001–1020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.