1,148
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Evolution of river-routing schemes in macro-scale models and their potential for watershed management

ORCID Icon
Pages 1062-1077 | Received 27 Feb 2017, Accepted 19 Apr 2018, Published online: 01 Jun 2018

References

  • Archfield, S.A., et al. 2015. Accelerating advances in continental domain hydrologic modeling. Water Resources Research, 51 (12), 10078–10091. doi:10.1002/2015WR017498
  • Arnell, N.W., 1995. River runoff data for the validation of climate simulation models. In: H.R. Oliver and S.A. Oliver, eds. The role of water and the hydrological cycle in global change. Berlin Heidelberg: Springer, 349–371.
  • Arora, V.K. and George, J.B., 1999. A variable velocity flow routing algorithm for GCMs. Journal of Geophysical Research: Atmospheres, 104 (D24), 30965–30979. doi:10.1029/1999JD900905
  • Bell, V.A., et al., 2007. Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrology and Earth System Sciences, 11 (1), 532–549. doi:10.5194/hess-11-53two-2007
  • Biancamaria, S., et al., 2011. Assimilation of virtual wide swath altimetry to improve Arctic river modeling. Remote Sensing of Environment, 115 (2), 373–381.
  • Biancamaria, S., Lettenmaier, D.P., and Pavelsky, T.M., 2016. The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics, 37 (2), 307–337. doi:10.1007/s10712-015-9346-y
  • Branstetter, M.L., 2001. Development of a parallel river transport algorithm and applications to climate studies PhD Dissertation. University of Texas.
  • Center for International Earth Science Information Network - CIESIN - Columbia University, 2015. Gridded population of the world, version 4 (GPWv4): population density, beta release. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). doi:10.7927/H46T0JKB
  • Clark, M.P., et al., 2015. Improving the representation of hydrologic processes in earth system models. Water Resources Research, 1–28. doi:10.1002/2015WR017096.Received
  • David, C.H., et al., 2011. River network routing on the NHDPlus dataset. Journal of Hydrometeorology, 12 (5), 913–934. doi:10.1175/2011JHM1345.1
  • Decharme, B., et al. 2010. Global evaluation of the ISBA-TRIP continental hydrological system. Part II: uncertainties in river routing simulation related to flow velocity and groundwater storage. Journal of Hydrometeorology, 11 (3), 601–617. doi:10.1175/2010JHM1212.1
  • Decharme, B., et al., 2012. Global off-line evaluation of the ISBA-TRIP flood model. Climate Dynamics, 38 (7–8), 1389–1412. doi:10.1007/s0038two-011-1054-9
  • Döll, P., Kaspar, F., and Lehner, B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270 (1), 105–134. doi:10.1016/S0022-1694(02)00283-4
  • Durand, M., et al., 2008. Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophysical Research Letters, 35 (20). doi:10.1029/2008GL034150
  • Fekete, B.M., et al., 2010. Millennium ecosystem assessment scenario drivers (1970–2050): climate and hydrological alterations. Global Biogeochemical Cycles, 24, 4. doi:10.1029/2009GB003593
  • Getirana, A.C.V., et al., 2012. The hydrological modeling and analysis platform (HyMAP): evaluation in the Amazon basin. Journal of Hydrometeorology, 13(6), 1641–1665. doi:10.1175/JHM-D-1221.1
  • Getirana, A.C.V., Boone, A., and Peugeot, C., 2014. Evaluating LSM-based water budgets over a west african basin assisted with a river routing scheme. Journal of Hydrometeorology, 15 (6), 2331–2346. doi:10.1175/JHM-D-14-0012.1
  • Gleason, C.J. and Smith, L.C., 2014. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences of the United States of America, 111 (13), 4788–4791. doi:10.1073/pnas.1317606111
  • Gong, L., et al., 2009. Large-scale runoff routing with an aggregated network-response function. Journal of Hydrology, 368 (1), 237–250. doi:10.1016/j.jhydrol.2009.02.007
  • Griffiths, J. and Lambert, R., 2013. Free flow: reaching water security through cooperation. Paris: UNESCO. Available from: http://unesdoc.unesco.org/images/0022/002228/222893e.pdf
  • Grill, G., et al., 2015. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 10 (1), 15001. doi:10.1088/1748-9326/10/1/015001
  • Grimaldi, S., et al., 2016. Remote sensing-derived water extent and level to constrain hydraulic flood forecasting models: opportunities and challenges. Surveys in Geophysics, 37 (5), 977–1034. Springer Netherlands. doi:10.1007/s1071two-016-9378-y
  • Guo, J., Liang, X., and Leung, L.R., 2004. A new multiscale flow network generation scheme for land surface models. Geophysical Research Letters, 31 (23). doi:10.1029/2004GL021381
  • Hirabayashi, Y., et al., 2013. Global flood risk under climate change. Nature Climate Change, 3 (9), 816–821. Nature Publishing Group. doi:10.1038/nclimate1911
  • Horizon Systems Corporation, 2007. National Hydrography Dataset Plus: Documentation. Available from: http://www.horizon-systems.com/nhdplus/[Accessed January 2018].
  • Islam, M.S., et al., 2007. A grid-based assessment of global water scarcity including virtual water trading. Water Resources Management, 21 (1), 19. doi:10.1007/s11269-006-9038-y.
  • Kilic, A., et al., 2016. METRIC-EEFLUX. Available from: http://eeflux-level1.appspot.com/ [Accessed January 2017].
  • Lehner, B. and Grill, G., 2013. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 27 (15), 2171–2186. doi:10.1002/hyp.9740
  • Li, H., et al., 2013. A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology, 14 (3), 808–828. doi:10.1175/JHM-D-1two-015.1
  • Li, H., et al., 2015. Evaluating global streamflow simulations by a physically based routing model coupled with the community land model. Journal of Hydrometeorology, 16 (2), 948–971. doi:10.1175/JHM-D-14-0079.1
  • Lohmann, D., NolteHolube, R., and Raschke, E., 1996. A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus Series a-Dynamic Meteorology and Oceanography. doi:10.1034/j.1600-0870.1996.t01-3-00009.x
  • Lohmann, D., et al., 1998. Regional scale hydrology: I. Formulation of the VIC-2l model coupled to a routing model. Hydrological Sciences Journal, 43 (1), 131–141. doi: 10.1080/02626669809492107
  • Masutomi, Y., et al. 2009. Development of highly accurate global polygonal drainage basin data. Hydrological Processes, 23 (4), 57two–584. doi:10.1002/hyp.7186
  • Miller, J.R., Russell, G.L., and Caliri, G., 1994. Continental-scale river flow in climate models. Journal of Climate, 7 (6), 914–928. doi:10.1175/1520-0442(1994)007<0914:CSRFIC>2.0.CO;2
  • Mizukami, N., et al., 2016. mizuRoute version 1: a river network routing tool for a continental domain water resources applications. Geoscientific Model Development, 9, 2223–2238. doi:10.5194/gmd-9-2223-2016
  • Naden, P., et al. 1999. River routing at the continental scale: use of globally-available data and an a priori method of parameter estimation. Hydrology and Earth System Sciences Discussions, 3 (1), 109–123. doi:10.5194/hess-3-109-1999
  • NASA Giovanni, 2018. Giovanni: The bridge between Data and Science. Available from: https://giovanni.gsfc.nasa.gov/giovanni/. [Accessed January 2018].
  • Nazemi, A. and Wheater, H.S., 2015a. On inclusion of water resource management in earth system models -part 1: problem definition and representation of water demand. Hydrology and Earth System Sciences, 19 (1), 33–61. doi:10.5194/hess-19-33-2015
  • Nazemi, A. and Wheater, H.S., 2015b. On inclusion of water resource management in earth system models part 2: representation of water supply and allocation and opportunities for improved modeling. Hydrology and Earth System Sciences, 19 (1), 63–90. doi:10.5194/hess-19-63-2015
  • Ngo-Duc, T., Oki, T., and Kanae, S., 2007. A variable streamflow velocity method for global river routing model: model description and preliminary results. Hydrology and Earth System Sciences Discussions, 4 (6), 4389–4414. doi:10.5194/hessd-4-4389-2007
  • Oki, T. and Sud, Y.C., 1998. Design of total runoff integrating pathways (TRIP)—A global river channel network. Earth Interactions, 2 (1), 1. doi:10.1175/1087-3562(1998)002<0001:DoTRIP>2.0.CO;2
  • Olivera, F., Famiglietti, J., and Asante, K., 2000. Global-scale flow routing using a source- to-sink algorithm. Water Resources Research, 36 (8), 2197–2207. doi:10.1029/2000WR900113
  • Overgaard, J., Rosbjerg, D., and Butts, M.B., 2006. Land-surface modelling in hydrological perspective? a review. Biogeosciences, 3 (2), 229–241. doi:10.5194/bg-3-229-2006
  • Paiva, R.C.D., Collischonn, W., and Tucci, C.E.M., 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology, 406 (3), 170–181. doi:10.1016/j.jhydrol.2011.06.007
  • Pappenberger, F., et al., 2010. Global runoff routing with the hydrological component of the ECMWF NWP system. International Journal of Climatology, 30 (14), 2155–2174. doi:10.1002/joc.2028
  • Pekel, J.-F., et al., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418–422. doi:10.1038/nature20584
  • Piccolroaz, S., et al., 2016. HYPERstream: a multi-scale framework for streamflow routing in large-scale hydrological model. Hydrol Earth Systems Sciences, 20, 2047–2061. doi:10.5194/hess-20-2047-2016
  • Pitman, A.J., 2003. The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23 (5), 479–510. doi:10.1002/joc.893
  • Pokhrel, Y., et al. 2012. Incorporating anthropogenic water regulation modules into a land surface model. Journal of Hydrometeorology, 13 (1), 255–269. doi:10.1175/JHM-D-11-013.1
  • Rabalais, N.N., et al. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science: Journal Du Conseil, 66 (7), 1528–1537. doi:10.1093/icesjms/fsp047
  • Sood, A. and Smakhtin, V., 2015. Global hydrological models: a review. Hydrological Sciences Journal, 60 (4), 549–565. doi:10.1080/02626667.2014.950580
  • Tallis, H.T., et al., 2013. InVEST 2.5. 3 user’s guide. The natural capital project. Stanford. Available from: http://data.naturalcapitalproject.org/invest-releases/documentation/2–5–3/. [Accessed March 2018].
  • Thomas, H.A., 1981. Improved methods for national water assessment. Report WR15249270. Washington, DC: US Water Resource Council.
  • Verzano, K., et al. 2012. Modeling variable river flow velocity on continental scale: current situation and climate change impacts in Europe. Journal of Hydrology, 424–425, 238–251. Elsevier B.V. doi:10.1016/j.jhydrol.2012.01.005
  • Voß, A., et al., 2012. Continental scale modelling of in‐stream river water quality: a report on methodology, test runs, and scenario application. Hydrological Processes, 26 (16), 2370–2384. doi:10.1002/hyp.9445
  • Vogel, R.M., et al., 2007. Relations among storage, yield, and instream flow. Water Resources Research, 43 (5), 1–12. doi:10.1029/2006WR005226
  • Vogel, R.M. and Sankarasubramanian, A., 2003. Validation of a watershed model without calibration. Water Resources Research, 39, 10. doi:10.1029/2002WR001940
  • Ward, P.J., et al., 2015. Usefulness and limitations of global flood risk models. Nature Climate Change, 5 (8), 712–715. Nature Publishing Group. doi:10.1038/nclimate2742
  • Wen, Z., Liang, X., and Yang, S., 2012. A new multiscale routing framework and its evaluation for land surface modeling applications. Water Resources Research, 48 (8). doi:10.1029/2011WR011337
  • Wu, H., et al., 2011. Automated upscaling of river networks for macroscale hydrological modeling.”. Water Resources Research, 47, 3. doi:10.1029/2009WR008871
  • Wu, H., et al. 2014. Real‐time global flood estimation using satellite‐based precipitation and a coupled land surface and routing model. Water Resources Research, 50 (3), 2693–2717. doi:10.1002/2013WR014710
  • Wu, H., et al., 2012. A new global river network database for macroscale hydrologic modeling. Water Resources Research, 48, 9. doi:10.1029/2012WR012313
  • Wu, Y. and Chen, J., 2013. Investigating the effects of point source and nonpoint source pollution on the water quality of the east river (Dongjiang) in South China. Ecological Indicators, 32, 294–304. Elsevier Ltd. doi:10.1016/j.ecolind.2013.04.002
  • WWAP (World Water Assessment Programme of the United Nations), 2017. The United Nations world water development report 2017. Wastewater: the untapped resource. Paris: UNESCO.
  • Xu, C.-Y., 1999. From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Progress in Physical Geography, 23 (2), 229–249. doi:10.1191/030913399667424608
  • Yamazaki, D., et al., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research, 47 (4), 1–21. doi:10.1029/2010WR009726
  • Yamazaki, D., et al., 2012. Analysis of the water level dynamics simulated by a global river model: a case study in the Amazon River. Water Resources Research, 48 (9), 1–15. doi:10.1029/2012WR011869
  • Ye, A., et al., 2013. Improving kinematic wave routing scheme in community land model. Hydrology Research 44 (January 2016): 886, 44, 886. doi:10.2166/nh.2012.145
  • Yearsley, J., 2012. A grid-based approach for simulating stream temperature. Water Resources Research, 48 (3), 1–15. doi:10.1029/2011WR011515

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.