1,118
Views
13
CrossRef citations to date
0
Altmetric
Articles

Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau

ORCID Icon, , ORCID Icon, , , , , , , , & show all
Pages 1733-1744 | Received 10 Oct 2017, Accepted 24 May 2018, Published online: 16 Oct 2018

References

  • Alagna, V., et al., 2018. The Impact of the age of vines on soil hydraulic conductivity in vineyards in Eastern Spain. Water, 10 (1), 1–11.
  • Argyrokastritis, I. and Kerkides, P., 2003. A note to the variable sorptivity infiltration equation. Water Resources Management, 17 (2), 133–145. doi:10.1023/A:1023663223269.
  • Bagarello, V., et al., 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501. doi:10.1016/j.geoderma.2013.08.032.
  • Cerda, A., et al., 2018a. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agriculture Ecosystems & Environment, 258, 49–58. doi:10.1016/j.agee.2018.02.015.
  • Cerda, A., et al., 2018b. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography, 42 (2), 202–219. doi:10.1177/0309133318758521.
  • Chang, X.L., et al., 2012. Influences of vegetation on permafrost: a review. Acta Ecologica Sinica, 32 (24), 7981–7990. doi:10.5846/stxb201202120181.
  • Cheng, G.D. and Wu, T.H., 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research-Earth Surface, 112 (F2), 1–10. doi:10.1029/2006JF000631.
  • Cuo, L., et al., 2013. The impacts of climate change and land cover/use transition on the hydrology in the upper yellow river basin, China. Journal of Hydrology, 502, 37–52. doi:10.1016/j.jhydrol.2013.08.003.
  • Dashtaki, S.G., et al., 2009. Site-dependence performance of infiltration models. Water Resources Management, 23 (13), 2777–2790. doi:10.1007/s11269-009-9408-3.
  • Di Prima, S., et al., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. doi:10.1016/j.geoderma.2015.08.006.
  • Dohnal, M., et al., 2016. Interpretation of ponded infiltration data using numerical experiments. Journal of Hydrology and Hydromechanics, 64 (3), 289–299. doi:10.1515/johh-2016-0020.
  • Feng, T.J., et al., 2018. Assessment of the impact of different vegetation patterns on soil erosion processes on semiarid loess slopes. Earth Surface Processes and Landforms, in press. doi:10.1002/esp.4361.
  • Fox, D.M., Bryan, R.B., and Price, A.G., 1997. The influence of slope angle on final infiltration rate for interrill conditions. Geoderma, 80 (1–2), 181–194. doi:10.1016/S0016-7061(97)00075-X.
  • Horton, R.E., 1940. Approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Journal, 5, 339–417. doi:10.2136/sssaj1941.036159950005000C0075x.
  • Horton, R.E., 1941. An approach toward a physical interpretation of infiltration-capacity. Soil Science Society of America Journal, 5 (C), 399–417. doi:10.2136/sssaj1941.036159950005000C0075x.
  • Hu, G.J., et al., 2015. Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. Science China Earth Sciences, 58 (12), 2309–2326. doi:10.1007/s11430-015-5197-0.
  • Hu, G.J., et al., 2017. Comparison of the thermal conductivity parameterizations for a freeze-thaw algorithm with a multi-layered soil in permafrost regions. Catena, 156, 244–251. doi:10.1016/j.catena.2017.04.011.
  • Huang, M., et al., 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma, 262, 285–293. doi:10.1016/j.geoderma.2015.08.014.
  • Jiang, D.S. and Huang, G.J., 1986. Study on the filtration rate of soils on the loess plateau of China. Acta Pedofil. Sinica, 23, 299–304.
  • Jury, W.A., Gardner, W.R., and Gardner, W.H. 1991. Soil physics. 5th ed. New York: John Wiley & Sons.
  • Kao, C.S. and Hunt, J.R., 1996. Prediction of Wetting Front Movement During One‐Dimensional Infiltration into Soils. Water Resources Research, 32 (1), 55–64. doi:10.1029/95WR02974.
  • Karlsson, J.M., Lyon, S.W., and Destouni, G., 2012. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. Journal of Hydrology, 464, 459–466. doi:10.1016/j.jhydrol.2012.07.037.
  • Kostiakov, A.N., 1932. On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration. Trans, 6, 17–21.
  • Li, C.J., et al., 2009. Infiltration Characteristics and Its Environmental Factors in the Fenghuoshan Basin. Bulletin of Soil and Water Conservation, 29 (6), 16–19.
  • Li, X.J., et al., 2011. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences, 64 (7), 1911–1919. doi:10.1007/s12665-011-1004-1.
  • Li, X.Z. and Fan, G.S., 2006. Influence of organic matter content on infiltration capacity and parameter in field soils. Nongye Gongcheng Xuebao(Transactions of the Chinese Society of Agricultural Engineering), 22 (3), 188–190.
  • Lin, Z.J., et al., 2009. The effect of embankment construction on permafrost in the Tibetan Plateau. Journal of Glaciology and Geocryology, 31 (6), 1127–1136.
  • Liu, D.P., et al., 2007. Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province. Chinese Journal of Applied Ecology, 18 (3), 493–498.
  • Liu, H., Zhao, W., and He, Z., 2013. Self-organized vegetation patterning effects on surface soil hydraulic conductivity: a case study in the Qilian Mountains, China. Geoderma, 192, 362–367. doi:10.1016/j.geoderma.2012.08.008.
  • Lundberg, A., et al., 2016. Snow and frost: implications for spatiotemporal infiltration patterns - a review. Hydrological Processes, 30 (8), 1230–1250. doi:10.1002/hyp.10703.
  • Mahe, G., et al., 2005. The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. Journal of Hydrology, 300 (1–4), 33–43. doi:10.1016/j.jhydrol.2004.04.028.
  • Martinez-Hernandez, C., Rodrigo-Comino, J., and Romero-Diaz, A., 2017. Impact of lithology and soil properties on abandoned dryland terraces during the early stages of soil erosion by water in south-east Spain. Hydrological Processes, 31 (17), 3095–3109. doi:10.1002/hyp.11251.
  • Mirzaee, S., et al., 2014. Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes. Archives of Agronomy and Soil Science, 60 (5), 681–693. doi:10.1080/03650340.2013.823477.
  • Mishra, S.K., Kumar, S.R., and Singh, V.P., 1999. Calibration and validation of a general infiltration model. Hydrological Processes, 13 (11), 1691–1718. doi:10.1002/(ISSN)1099-1085.
  • Parhi, P.K., Mishra, S., and Singh, R., 2007. A modification to kostiakov and modified kostiakov infiltration models. Water Resources Management, 21 (11), 1973–1989. doi:10.1007/s11269-006-9140-1.
  • Philip, J.R., 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science, 84, 257–264. doi:10.1097/00010694-195709000-00010.
  • Pohl, M., et al., 2009. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil, 324 (1–2), 91–102. doi:10.1007/s11104-009-9906-3.
  • Qin, Y.H., et al., 2016. Using ERA-Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai-Tibet Plateau. Environmental Earth Sciences, 75 (9), 1–13. doi:10.1007/s12665-016-5633-2.
  • Ravi, V., Williams, J.R., and Ouyang, Y., 1998. Estimation of infiltration rate in the vadose zone: compilation of simple mathematical models. Technical Report. Washington, DC: USEPA. EPA/600/R-97-128a.
  • Ren, G., 2002. Permeability of soils under different forest vegetation in Eastern Liaoning Mountain Region. Rural Eco-Environment, 18 (4), 1–4.
  • Ren, J.W., 2013. Updating assessment results of global cryospheric change from SPM of IPCC WGI Fifth Assessment Report. Journal of Glaciology and Geocryology, 35 (5), 1065–1067.
  • Ren, Z.P., et al., 2016. Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau, China. Journal of Arid Land, 8 (4), 546–555. doi:10.1007/s40333-016-0010-2.
  • Reynolds, W., Elrick, D., and Youngs, E., 2002. Ring or cylinder infiltrometers (vadose zone). Methods of Soil Analysis. Part, 4, 818–826.
  • Rodrigo Comino, J., et al., 2017. The impact of vineyard abandonment on soil properties and hydrological processes. Vadose Zone Journal, 16 (12), 2–7.
  • Shang, W., et al., 2016. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai-Tibet Plateau. Catena, 137, 670–678. doi:10.1016/j.catena.2015.07.012.
  • Smith, R.E., 1972. The infiltration envelope: results from a theoretical infiltrometer. Journal of Hydrology, 17, 1–21. doi:10.1016/0022-1694(72)90063-7.
  • Soil Survey Staff. 2009. Soil Survey Field and Laboratory Methods Manual, Soil Survey Investigations Report No. 51, Version 1.0. (ed Burt R). U.S. Department of Agriculture, Natural Resources Conservation Service, Lincoln, Nebraska.
  • Swartzendruber, D. 1987. A quasi-solution of Richards equation for the downward infiltration of water into soil. Water Resources Research, 23, 809–817. doi:10.1029/WR023i005p00809.
  • Tian, L.M., et al., 2018. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. The Science of the Total Environment, 622-623, 192–202. doi:10.1016/j.scitotenv.2017.11.331.
  • Wang, G.X., et al., 2006. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Science in China Series D-Earth Sciences, 49 (11), 1156–1169. doi:10.1007/s11430-006-1156-0.
  • Wang, G.X., et al., 2006. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet. Hydrological Processes, 22 (17), 3310–3320. doi:10.1002/hyp.6913.
  • Wang, G.X., et al., 2011a. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Climatic Change, 106 (3), 463–482. doi:10.1007/s10584-010-9952-0.
  • Wang, G.X., Liu, G.S., and Li, C.J., 2012. Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. Journal of Hydrology, 444, 22–33.
  • Wang, Y.B., et al., 2010. The impact of vegetation degeneration on hydrology features of alpine soil. Journal of Glaciology and Geocryology, 32 (5), 989–998.
  • Wang, Y.B., et al., 2011b. Study on the impact of vegetation degeneration to hydrology characteristic of the Alpine soil. Sciences Cold Arid Reg, 3, 0233–0242.
  • Wang, Y.B., et al., 2014. Effect of a thermokarst lake on soil physical properties and infiltration processes in the permafrost region of the Qinghai-Tibet Plateau, China. Science China Earth Sciences, 57 (10), 2357–2365. doi:10.1007/s11430-014-4906-4.
  • Wu, Q.B. and Niu, F.J., 2013. Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chinese Science Bulletin, 58 (10), 1079–1094. doi:10.1007/s11434-012-5587-z.
  • Xi, H.Y., et al., 2008. Permeability characteristics of soils and their dependence on soil conditions in Ejina Oasis. Journal of Glaciology and Geocryology, 30 (6), 976–982.
  • Yao, T.D., et al., 2013. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau. Chinese Journal Natural, 35 (3), 179–186.
  • Zeng, C., et al., 2013. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau. Journal of Hydrology, 478, 148–156. doi:10.1016/j.jhydrol.2012.11.058.
  • Zhang, S.F., et al., 2004. Study on the changes of water cycle and its impacts in the source region of the Yellow River. Science in China Series E: Technological Sciences, 47 (1), 142–151. doi:10.1360/04ez0012.
  • Zhang, Y.S., Ohata, T., and Kadota, T., 2003. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau. Journal of Hydrology, 283 (1–4), 41–56. doi:10.1016/S0022-1694(03)00240-3.
  • Zhao, L., et al., 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–xizang (Tibetan) Plateau, China. Global and Planetary Change, 43 (1–2), 19–31. doi:10.1016/j.gloplacha.2004.02.003.
  • Zhou, G.S. and Zhang, X.S., 1995. Study on climate-vegetation classification for global change in China. Acta Botanica Sinica, 38 (1), 8–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.