1,311
Views
75
CrossRef citations to date
0
Altmetric
Articles

Modelling groundwater level variations by learning from multiple models using fuzzy logic

, , &
Pages 210-226 | Received 07 May 2018, Accepted 11 Oct 2018, Published online: 11 Feb 2019

References

  • Alvisi, S., et al., 2006. Water level forecasting through fuzzy logic and artificial neural network approaches. Journal of Hydrology and Earth System Sciences, 10 (1), 1–17. doi:10.5194/hess-10-1-2006
  • Asadi, S., et al., 2014. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification. Environmental Science and Pollution Research, 21 (14), 8847–8857. doi:10.1007/s11356-014-2821-z
  • Baghapour, M.A., et al., 2016. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Journal of Environmental Health Science and Engineering, 14 (1), 13. doi:10.1186/s40201-016-0254-y
  • Chen, C.H. and Lin, Z.S., 2006. A committee machine with empirical formulas for permeability prediction. Computers and Geosciences, 32 (4), 485–496. doi:10.1016/j.cageo.2005.08.003
  • Chen, M.S. and Wang, S.W., 1999. Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Sets and Systems, 103 (2), 239–254. doi:10.1016/S0165-0114(98)00224-3
  • Chitsazan, N., Nadiri, A.A., and Tsai, F.T.-C., 2015. Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging. Journal of Hydrology, 528, 52–62. doi:10.1016/j.jhydrol.2015.06.007
  • Chiu, S., 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 2, 267–278.
  • Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I.K., 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309, 229–240. doi:10.1016/j.jhydrol.2004.12.001
  • Emberger, L., 1930. Sur une formule applicable en g´eogrphiebotanique. Cahiers Herbs Seances de l’Academie des Sciences, 191, 389–390.
  • Fijani, E., et al., 2013. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer Iran. Journal of Hydrology, 503, 89–100. doi:10.1016/j.jhydrol.2013.08.038
  • Giustolisi, O. and Simeone, V., 2010. Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions. Hydrological Sciences Journal, 53, 502–523.
  • Jha, M.K. and Sahoo, S., 2015. Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater. Hydrological Processes, 29, 671–691. doi:10.1002/hyp.v29.5
  • Kadkhodaie-Ilkhchi, A., et al., 2009. Petrophysical data prediction from seismic attributes using committee fuzzy inference system. Computers and Geosciences, 35, 2314–2330. doi:10.1016/j.cageo.2009.04.010
  • Khatibi, R., Ghorbani, M.A., and Pourhosseini, F.A., 2017. Stream flow predictions using nature-inspired Firefly Algorithms and a Multiple Model strategy – directions of innovation towards next generation practices. Journal of Advanced Engineering Informatics, 34, 80–89. doi:10.1016/j.aei.2017.10.002
  • Khatibi, R., et al., 2011. Comparison of three artificial intelligence techniques for discharge routing. Journal of Hydrology, 403, 201–212. doi:10.1016/j.jhydrol.2011.03.007
  • Labani, M.M., Kadkhodaie-Ilkhchi, A., and Salahshoor, K., 2010. Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: a case study from the Iranian part of the South Pars gas field, Persian Gulf basin. Journal of Petroleum Science and Engineering, 72, 175–185. doi:10.1016/j.petrol.2010.03.015
  • Lallahem, S., et al., 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307, 92–111. doi:10.1016/j.jhydrol.2004.10.005
  • Larsen, P.M., 1980. Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies, 12, 3–10. doi:10.1016/S0020-7373(80)80050-2
  • Lee, K.H., 2004. First course on fuzzy theory and applications. Berlin: Springer.
  • Legates, D.R. and McCabe, G.J., 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018
  • Mamdani, E.H., 1977. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 26, 1182–1191. doi:10.1109/TC.1977.1674779
  • Mohanty, S., et al., 2013. Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi-Surua Inter-basin of Odisha, India. Journal of Hydrology, 495, 38–51. doi:10.1016/j.jhydrol.2013.04.041
  • Nadiri, A.A., et al., 2013a. Supervised committee machine with artificial intelligence for prediction of fluoride concentration. Journal of Hydroinformatics, 15 (4), 1474–1490. doi:10.2166/hydro.2013.008
  • Nadiri, A.A., et al., 2013b. Hydro geochemical analysis for Tasuj plain aquifer, Iran. Journal of Earth System Science, 122 (4), 1091–1105. doi:10.1007/s12040-013-0329-4
  • Nadiri, A.A., et al., 2014. Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering, 19, 520–532. doi:10.1061/(ASCE)HE.1943–5584.0000824
  • Nadiri, A.A., et al., 2017a. Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Science of the Total Environment, 574, 691–706. doi:10.1016/j.scitotenv.2016.09.093
  • Nadiri, A.A., et al., 2017b. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models. Environmental Science and Pollution Research, 24 (9), 8562–8577. doi:10.1007/s11356-017-8489-4
  • Nadiri, A. A., et al., 2017c. Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures. Journal of Science of the Total Environment, 593, 75–90. doi: 10.1016/j.scitotenv.2017.03.109
  • Nadiri, A.A., et al., 2018a. Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers. Computers and Concrete, 21 (1). doi:10.12989/cac.2018.21.1.000
  • Nadiri, A.A., et al., 2018b. Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model. Journal of Cleaner Production, 180, 539–549. doi:10.1016/j.jclepro.2018.01.139
  • Nadiri, A.A., et al., 2018c. Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using “risk cells”. Journal of Environmental Management, 217, 654–667. doi:10.1016/j.jenvman.2018.04.011
  • Nadiri, A.A., et al., 2018d. Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks. Journal of Environmental Management, 227, 415–428. doi:10.1016/j.jenvman.2018.08.019
  • Nadiri, A.A., Asgharimoghaddam, A., and Shokri, S., 2015a. Efficiency assessment of wastewater treatment plant of Tabriz using artificial intelligence models. Journal of Environmental Studies, 40 (4), 827–844.
  • Naftaly, U., Intrator, N., and Horn, D., 1997. Optimal ensemble averaging of neural networks. Journal of Computational Neuroscience, 8, 283–296.
  • Nayak, P.C., et al., 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291 (1–2), 52–66. doi:10.1016/j.jhydrol.2003.12.010
  • Newton, S.C., Pemmaraju, S., and Mitra, S., 1992. Adaptive fuzzy leader clustering of complex data sets in pattern recognition. IEEE Transactions on Neural Networks, 3, 794–800. doi:10.1109/72.159068
  • Nourani, V., Mogaddam, A., and Nadiri, A.O., 2008a. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes, 22, 5054–5066. doi:10.1002/hyp.v22:26
  • Nourani, V., et al., 2008b. Forecasting spatiotemporal water levels of Tabriz aquifer. Trends in Applied Sciences Research, 3 (4), 319–329. doi:10.3923/tasr.2008.319.329
  • Sahoo, M., et al., 2016. Space–time forecasting of groundwater level using a hybrid soft computing model. Hydrological Sciences Journal, 62, 561–574.
  • Shiri, J. and Kişi, Ö., 2011. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computers and Geosciences, 37 (10), 1692–1701. doi:10.1016/j.cageo.2010.11.010
  • Sugeno, M., 1985. Industrial application of fuzzy control. New York: North-Holland.
  • Tayfur, G., Nadiri, A.A., and Moghaddam, A.A., 2014. Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management, 28, 1173–1184. doi:10.1007/s11269-014-0553–y
  • Ward Jr., J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244. doi:10.1080/01621459.1963.10500845
  • Yurdusev, M.A., et al., 2009. Neural networks and fuzzy inference systems for predicting water consumption time series. Stochastic Environmental Research and Risk Assessment, 23, 1225. doi:10.1007/s00477-009-0320-4
  • Zadeh, L.A., 1965. Fuzzy sets. Information and Control, 8 (3), 338–353. doi:10.1016/S0019-9958(65)90241-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.