1,820
Views
22
CrossRef citations to date
0
Altmetric
Articles

Hydrological modelling uncertainty analysis for different flow quantiles: a case study in two hydro-geographically different watersheds

, , &
Pages 473-489 | Received 25 Mar 2018, Accepted 07 Dec 2018, Published online: 29 Mar 2019

References

  • Abbaspour, K.C., 2013. SWAT-CUP 2012: SWAT calibration and uncertainty programs–a user manual. Dübendorf, Switzerland: Eawag, 103.
  • Abbaspour, K.C., Vaghefi, S.A., and Srinivasan, R., 2017. A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 International SWAT Conference. doi: 10.3390/w10010006
  • Ajami, N.K., et al., 2006. Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results. Journal of Hydrometeorology, 7 (4), 755–768. doi:10.1175/JHM519.1
  • Arabi, M., et al., 2007. Multiobjective sensitivity analysis of sediment and nitrogen processes with a watershed model. Water Resources Research, 43 (6). doi:10.1029/2006WR005463
  • Arnold, J.G., et al., 1998. Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • Arnold, J.G., et al., 2012. SWAT: model use, calibration, and validation. Transactions of the ASABE, 55 (4), 1491–1508. doi:10.13031/2013.42256
  • Azari, M., et al., 2016. Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrological Sciences Journal, 61 (1), 123–133. doi:10.1080/02626667.2014.967695
  • Bárdossy, A. and Das, T., 2008. Influence of rainfall observation network on model calibration and application. Hydrology and Earth System Sciences Discussions, 12 (1), 77–89. doi:10.5194/hess-12-77-2008
  • Beven, K., 1989. Changing ideas in hydrology—the case of physically-based models. Journal of Hydrology, 105 (1–2), 157–172. doi:10.1016/0022-1694(89)90101-7
  • Beven, K. and Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6 (3), 279–298. doi:10.1002/(ISSN)1099-1085
  • Beven, K. and Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249 (1–4), 11–29. doi:10.1016/S0022-1694(01)00421-8
  • Bingner, R., et al., 1997. Effect of watershed subdivision on simulation runoff and fine sediment yield. Transactions of the ASAE, 40 (5), 1329–1335. doi:10.13031/2013.21391
  • Blöschl, G. and Sivapalan, M., 1995. Scale issues in hydrological modelling: a review. Hydrological Processes, 9 (3–4), 251–290. doi:10.1002/(ISSN)1099-1085
  • Carpenter, T.M. and Georgakakos, K.P., 2006. Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology, 329 (1–2), 174–185. doi:10.1016/j.jhydrol.2006.02.013
  • Chaubey, I., et al., 2005. Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes: An International Journal, 19 (3), 621–628. doi:10.1002/hyp.5607
  • Cibin, R., Sudheer, K., and Chaubey, I., 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes, 24 (9), 1133–1148. doi:10.1002/hyp.v24:9
  • Dehotin, J. and Braud, I., 2008. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrology and Earth System Sciences, 12 (3), 769–796. doi:10.5194/hess-12-769-2008
  • Dixon, B. and Earls, J., 2012. Effects of urbanization on streamflow using SWAT with real and simulated meteorological data. Applied Geography, 35 (1–2), 174–190. doi:10.1016/j.apgeog.2012.06.010
  • Eckhardt, K. and Arnold, J., 2001. Automatic calibration of a distributed catchment model. Journal of Hydrology, 251 (1–2), 103–109. doi:10.1016/S0022-1694(01)00429-2
  • Fan, Y., et al., 2015. A coupled ensemble filtering and probabilistic collocation approach for uncertainty quantification of hydrological models. Journal of Hydrology, 530, 255–272. doi:10.1016/j.jhydrol.2015.09.035
  • Fan, Y., et al., 2017a. Development of a copula‐based particle filter (C op PF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resources Research, 53 (6), 4850–4875. doi:10.1002/2016WR020144
  • Fan, Y., et al., 2017b. Development of integrated approaches for hydrological data assimilation through combination of ensemble Kalman filter and particle filter methods. Journal of Hydrology, 550, 412–426. doi:10.1016/j.jhydrol.2017.05.010
  • Faramarzi, M., et al., 2013. Modeling impacts of climate change on freshwater availability in Africa. Journal of Hydrology, 480, 85–101. doi:10.1016/j.jhydrol.2012.12.016
  • FitzHugh, T.W. and Mackay, D., 2000. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. Journal of Hydrology, 236 (1–2), 35–53. doi:10.1016/S0022-1694(00)00276-6
  • Freer, J., Beven, K., and Ambroise, B., 1996. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resources Research, 32 (7), 2161–2173. doi:10.1029/95WR03723
  • Gao, H., et al., 2010. Water budget record from Variable Infiltration Capacity (VIC) model. http://eprints.lancs.ac.uk/id/eprint/89407
  • Gassman, P.W., et al., 2007. The Soil and Water Assessment Tool: historical development, applications, and future research directions. Transactions of the ASABE, 50 (4), 1211–1250. doi:10.13031/2013.23637
  • Haverkamp, S., et al., 2002. Subwatershed spatial analysis tool: discretization of a distributed hydrologic model by statistical criteria 1. JAWRA Journal of the American Water Resources Association, 38 (6), 1723–1733. doi:10.1111/j.1752-1688.2002.tb04377.x
  • Haverkamp, S., Fohrer, N., and Frede, H.G., 2005. Assessment of the effect of land use patterns on hydrologic landscape functions: A comprehensive GIS‐based tool to minimize model uncertainty resulting from spatial aggregation. Hydrological Processes: An International Journal, 19 (3), 715–727. doi:10.1002/hyp.5626
  • Jha, M., et al., 2004. Effect of watershed subdivision on SWAT flow, sediment, and nutrient predictions. JAWRA Journal of the American Water Resources Association, 40 (3), 811–825. doi:10.1111/j.1752-1688.2004.tb04460.x
  • Kannan, N. and Jeong, J., 2011. An approach for estimating stream health using flow duration curves and indices of hydrologic alteration. Report Prepared for the United States Environmental Protection Agency-Retion 6. Dallas, TX: United States Environmental Protection Agency Office of Water.
  • Kavetski, D., Kuczera, G., and Franks, S.W., 2006. Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resources Research, 42 (3). doi: 10.1029/2005WR004376
  • Krysanova, V., et al., 2000. SWIM (Soil and Water Integrated Model): user Manual. Germany: Potsdam Institute for Climate Impact Research Potsdam.
  • Kumar, S. and Merwade, V., 2009. Impact of Watershed Subdivision and Soil Data Resolution on SWAT Model Calibration and Parameter Uncertainty 1. JAWRA Journal of the American Water Resources Association, 45 (5), 1179–1196. doi:10.1111/jawr.2009.45.issue-5
  • Lenhart, T., et al., 2002. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27 (9–10), 645–654. doi:10.1016/S1474-7065(02)00049-9
  • Liu, Z., et al., 2011. Evaluation of two statistical downscaling models for daily precipitation over an arid basin in China. International Journal of Climatology, 31 (13), 2006–2020. doi:10.1002/joc.2211
  • Lohmann, D., et al., 1998. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences Journal, 43 (1), 131–141. doi:10.1080/02626669809492107
  • Mamillapalli, S., et al., 1996. Effect of spatial variability on basin scale modeling. In Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Moulin, L., Gaume, E., and Obled, C., 2009. Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrology and Earth System Sciences Discussions, 13 (2), 99–114. doi:10.5194/hess-13-99-2009
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Neitsch, S.L., et al., 2005. Soil and Water Assessment Tool (SWAT) theoretical documentation, version 2005. Temple, TX: Grassland Soil and Water Research Laboratory. Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station.
  • Neitsch, S.L., et al., 2011. Soil and Water Assessment Tool theoretical documentation version 2009. Texas Water Resources Institute. http://hdl.handle.net/1969.1/128050.
  • Neuman, S.P., 2003. Maximum likelihood Bayesian averaging of uncertain model predictions. Stochastic Environmental Research and Risk Assessment, 17 (5), 291–305. doi:10.1007/s00477-003-0151-7
  • Pfannerstill, M., Guse, B., and Fohrer, N., 2014. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447–458. doi:10.1016/j.jhydrol.2013.12.044
  • Sivapalan, M. and Kalma, J.D., 1995. Scale problems in hydrology: contributions of the Robertson Workshop. Hydrological Processes, 9 (3–4), 243–250. doi:10.1002/(ISSN)1099-1085
  • Spear, R. and Hornberger, G., 1980. Eutrophication in Peel Inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Research, 14 (1), 43–49. doi:10.1016/0043-1354(80)90040-8
  • Sun, X., et al., 2000. Flood estimation using radar and raingauge data. Journal of Hydrology, 239 (1–4), 4–18. doi:10.1016/S0022-1694(00)00350-4
  • Tegegne, G., et al., 2017b. Selecting hydrologic modelling approaches for water resource assessment in the Yongdam watershed. Journal of Hydrology (New Zealand), 56 (2), 155–164.
  • Tegegne, G. and Kim, Y.-O., 2018. Modelling ungauged catchments using the catchment runoff response similarity. Journal of Hydrology, 564, 452–466. doi:10.1016/j.jhydrol.2018.07.042
  • Tegegne, G., Park, D.K., and Kim, Y.-O., 2017a. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14, 49–66.
  • Thiemann, M., et al., 2001. Bayesian recursive parameter estimation for hydrologic models. Water Resources Research, 37 (10), 2521–2535. doi:10.1029/2000WR900405
  • Tian, F., et al., 2016. Effects of ecological engineering on water balance under two different vegetation scenarios in the Qilian Mountain, northwestern China. Journal of Hydrology: Regional Studies, 5, 324–335.
  • Uniyal, B., Jha, M.K., and Verma, A.K., 2015. Parameter identification and uncertainty analysis for simulating streamflow in a river basin of Eastern India. Hydrological Processes, 29 (17), 3744–3766. doi:10.1002/hyp.v29.17
  • Van Griensven, A., et al., 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324 (1), 10–23. doi:10.1016/j.jhydrol.2005.09.008
  • Vrugt, J.A., et al., 2003. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39 (8). doi:10.1029/2002WR001642
  • Vrugt, J.A., et al., 2005. Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation. Water Resources Research, 41 (1). doi:10.1029/2004WR003059
  • Wang, X., et al., 2015. Assessing the effects of precipitation and temperature changes on hydrological processes in a glacier‐dominated catchment. Hydrological Processes, 29 (23), 4830–4845. doi:10.1002/hyp.10538
  • Wang, Y., et al., 2016. Impact of spatial discretization of hydrologic models on spatial distribution of nonpoint source pollution hotspots. Journal of Hydrologic Engineering, 21 (12), 04016047. doi:10.1061/(ASCE)HE.1943-5584.0001455
  • Winchell, M., et al., 2007. ArcSWAT interface for SWAT 2005. User’sGuide, Temple: Blackland Research Center, Texas Agricultural Experiment Station.
  • Yuan, D., et al., 2007. Development of an integrated model for assessing the impact of diffuse and point source pollution on coastal waters. Environmental Modelling & Software, 22 (6), 871–879. doi:10.1016/j.envsoft.2006.05.010
  • Zhang, D., et al., 2015a. Improved calibration scheme of SWAT by separating wet and dry seasons. Ecological Modelling, 301, 54–61. doi:10.1016/j.ecolmodel.2015.01.018
  • Zhang, L., et al., 2015b. Modeling land-use and land-cover change and hydrological responses under consistent climate change scenarios in the Heihe River Basin, China. Water Resources Management, 29 (13), 4701–4717. doi:10.1007/s11269-015-1085-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.