690
Views
1
CrossRef citations to date
0
Altmetric
Articles

Parameter identification in hydrological models using groundwater-level measurements and satellite-based soil moisture

, &
Pages 633-652 | Received 06 Jun 2018, Accepted 26 Feb 2019, Published online: 29 Apr 2019

References

  • Albergel, C., et al., 2009. An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France. Hydrology and Earth System Sciences, 13 (2), 115–124. doi:10.5194/hess-13-115-2009
  • Albergel, C., et al., 2010. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France. Hydrology and Earth System Sciences, 14 (11), 2177–2191. doi:10.5194/hess-14-2177-2010
  • Al-Safi, H.I.J. and Sarukkalige, P.R., 2017. Assessment of future climate change impacts on hydrological behavior of Richmond River Catchment. Water Science and Engineering, 10 (3), 197–208. doi:10.1016/j.wse.2017.05.004
  • Bárdossy, A. and Singh, S.K., 2008. Robust estimation of hydrological model parameters. Hydrology and Earth System Sciences, 12 (6), 1273–1283. doi:10.5194/hess-12-1273-2008
  • Beskow, S., Norton, L.D., and Mello, C.R., 2013. Hydrological prediction in a tropical watershed dominated by oxisols using a distributed hydrological model. Water Resources Management, 27 (2), 341–363. doi:10.1007/s11269-012-0189-8
  • Beven, K., 1995. Linking parameters across scales: subgrid parameterizations and scale dependent hydrological models. Hydrological Processes, 9 (5–6), 507–525. doi:10.1002/(ISSN)1099-1085
  • Binley, A., Beven, K., and Elgy, J., 1989a. A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities. Water Resources Research, 25 (6), 1227–1233. doi:10.1029/WR025i006p01227
  • Binley, A., Elgy, J., and Beven, K., 1989b. A physically based model of heterogeneous hillslopes: 1. Runoff production. Water Resources Research, 25 (6), 1219–1226. doi:10.1029/WR025i006p01219
  • Boess, J., et al., eds., 2004. Erläuterungsheft zur digitalen nutzungsdifferenzierten Bodenkundlichen Übersichtskarte 1:50.000 (BÜK50n) von Niedersachsen. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.
  • Bronstert, A. and Bárdossy, A., 1999. The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale. Hydrology and Earth System Sciences, 3 (4), 505–516. doi:10.5194/hess-3-505-1999
  • Chen, D., et al., 2005. Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. Climate Research, 28, 123–132. doi:10.3354/cr028123
  • Christiaens, K. and Feyen, J., 2002. Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework. Hydrological Processes, 16 (2), 373–391. doi:10.1002/(ISSN)1099-1085
  • Coles, N.A., et al., 1997. Modelling runoff generation on small agricultural catchments: can real world runoff responses be captured? Hydrological Processes, 11 (2), 111–136. doi:10.1002/(SICI)1099-1085(199702)11:2<111::AID-HYP434>3.0.CO;2-M
  • Crow, W.T., et al., 2009. Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals. Journal of Hydrometeorology, 10 (1), 199–212. doi:10.1175/2008JHM986.1
  • Crow, W.T., et al., 2017. L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting. Geophysical Research Letters, 44 (11), 5495–5503. doi:10.1002/2017GL073642
  • Crow, W.T. and Ryu, D., 2009. A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals. Hydrology and Earth System Sciences, 13 (1), 1–16. doi:10.5194/hess-13-1-2009
  • de Roo, A.P.J., Wesseling, C.G., and Ritsema, C.J., 1996. Lisem: a single-event physically based hydrological and soil erosion model for drainage basins. I: theory, input and output. Hydrological Processes, 10 (8), 1107–1117. doi:10.1002/(ISSN)1099-1085
  • Draper, C., et al., 2011. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France. Hydrology and Earth System Sciences, 15 (12), 3829–3841. doi:10.5194/hess-15-3829-2011
  • Drusch, M., et al., 2004. Soil moisture retrieval during the Southern Great Plains Hydrology Experiment 1999. A comparison between experimental remote sensing data and operational products. Water Resources Research, 40 (2), 687. doi:10.1029/2003WR002441
  • Duan, Q., Sorooshian, S., and Gupta, V., 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28 (4), 1015–1031. doi:10.1029/91WR02985
  • Duan, Q., Sorooshian, S., and Gupta, V.K., 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158 (3–4), 265–284. doi:10.1016/0022-1694(94)90057-4
  • Duan, Q.Y., Gupta, V.K., and Sorooshian, S., 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76 (3), 501–521. doi:10.1007/BF00939380
  • Durner, W., Jansen, U., and Iden, S.C., 2007. Effective hydraulic properties of layered soils at the lysimeter scale determined by inverse modelling. European Journal of Soil Science, 071026202618002-???. doi:10.1111/ejs.ahead-of-print
  • Efstratiadis, A. and Koutsoyiannis, D., 2010. One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrological Sciences Journal, 55 (1), 58–78. doi:10.1080/02626660903526292
  • Entin, J.K., et al., 2000. Temporal and spatial scales of observed soil moisture variations in the extratropics. Journal of Geophysical Research, 105 (D9), 11865–11877. doi:10.1029/2000JD900051
  • Förster, K., 2013. Detaillierte Nachbildung von Schneeprozessen in der hydrologischen Modellierung. Dissertation. Technische Universität Braunschweig, Leichtweiß-Institut für Wasserbau.
  • Förster, K., et al., 2014. Effect of meteorological forcing and snow model complexity on hydrological simulations in the Sieber catchment (Harz Mountains, Germany). Hydrology and Earth System Sciences, 18 (11), 4703–4720. doi:10.5194/hess-18-4703-2014
  • Förster, K., Gelleszun, M., and Meon, G., 2012. A weather dependent approach to estimate the annual course of vegetation parameters for water balance simulations on the meso- and macroscale. Advances in Geosciences, 32, 15–21. doi:10.5194/adgeo-32-15-2012
  • Gelleszun, M., Kreye, P., and Meon, G., 2015. Lexikografische Kalibrierungsstrategie für eine effiziente Parameterschätzung in hochaufgelösten Niederschlag-Abfluss-Modellen. Hydrologie und Wasserbewirtschaftung, 59 (3), 84–95.
  • Gelleszun, M., Kreye, P., and Meon, G., 2017. Representative parameter estimation for hydrological models using a lexicographic calibration strategy. Journal of Hydrology, 553, 722–734. doi:10.1016/j.jhydrol.2017.08.015
  • Gocht, M., 2013. Optimierter Betrieb eines Talsperrenverbundsystems mit Anpassung an den Klimawandel. Braunschweig: Univ.-Bibl.
  • Gocht, M. and Meon, G., 2016. Modelling and assessment of the combined impacts of climatic and demographic change on a multipurpose reservoir system in the Harz mountains. Environmental Earth Sciences, 75 (21), 3589. doi:10.1007/s12665-016-6099-y
  • Guo, J., et al., 2013. A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resources Management, 27 (8), 2923–2946. doi:10.1007/s11269-013-0324-1
  • Hall, M.J., 2001. How well does your model fit the data? Journal of Hydroinformatics, 3 (1), 49–55. doi:10.2166/hydro.2001.0006
  • Hasenauer, S., et al., 2009. Bodenfeuchtedaten aus Fernerkundung für hydrologische Anwendungen. Österreichische Wasser- und Abfallwirtschaft, 61 (7–8), 117–123. doi:10.1007/s00506-009-0097-1
  • Hattermann, F.F., et al., 2017. Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change, 141 (3), 561–576. doi:10.1007/s10584-016-1829-4
  • Holland, J.H., 1975. Adaptation in natural and artificial systems. An introductory analysis with applications to biology, control and artificial intelligence. Ann Arbor: University of Michigan Press.
  • Hölscher, J., et al., 2012. Globaler Klimawandel. Wasserwirtschaftliche Folgenabschätzung für das Binnenland. 1st ed. Norden: NLWKN.
  • Hölscher, J., et al., 2014. Globaler Klimawandel. Wasserwirtschaftliche Folgenabschätzung für das Binnenland. 1st ed. Norden: NLWKN.
  • Hölscher, J., et al., 2017. Globaler Klimawandel. Wasserwirtschaftliche Folgenabschätzung für das Binnenland : gesamtbericht des Projektes KliBiW Themenbereich Hochwasser. 1st ed. Hannover: Niedersächsischer Landesbetrieb für Wasserwirtschaft Küsten- und Naturschutz (NLWKN).
  • Jolly, W.M., Nemani, R., and Running, S.W., 2005. A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biology, 11 (4), 619–632. doi:10.1111/gcb.2005.11.issue-4
  • Kirchner, J.W., 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42 (W03S04), 1–5. doi:10.1029/2005WR004362
  • Koch, J., et al., 2016. Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment. Journal of Hydrology, 533, 234–249. doi:10.1016/j.jhydrol.2015.12.002
  • Kreye, P., 2015. Mesoskalige Bodenwasserhaushaltsmodellierung mit Nutzung von Grundwassermessungen und satellitenbasierten Bodenfeuchtedaten. Dissertation. Technische Universität Braunschweig.
  • Kreye, P., et al., 2017. Detaillierte Nachbildung der Niedrigwasserverhältnisse in der hydrologischen Modellierung für die Ermittlung von Klimafolgen im Aller-Leine-Oker-Einzugsgebiet, Niedersachsen. Koblenz: Bundesanstalt für Gewässerkunde (BfG).
  • Kreye, P., Gelleszun, M., and Meon, G., 2012. Ein landnutzungssensitives Bodenmodell für die meso- und makroskalige Wasserhaushaltsmodellierung. In: M. Weiler, ed.. Wasser ohne Grenzen. Freiburg/Breisgau: Rombach Druck- und Verlagshaus GmbH & Co. KG, 25–30
  • Kreye, P., Gocht, M., and Förster, K., 2010. Entwicklung von Prozessgleichungen der Infiltration und des oberflächennahen Abflusses für die Wasserhaushaltsmodellierung. Hydrologie und Wasserbewirtschaftung, 54 (5), 268–278.
  • Kreye, P. and Meon, G., 2016. Subgrid spatial variability of soil hydraulic functions for hydrological modelling. Hydrology and Earth System Sciences, 20 (6), 2557–2571. doi:10.5194/hess-20-2557-2016
  • Laiolo, P., et al., 2016. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. International Journal of Applied Earth Observation and Geoinformation, 48, 131–145. doi:10.1016/j.jag.2015.06.002
  • Law, J., 1944. A statistical approach to the interstitial heterogeneity of sand reservoirs. Transactions of the AIME, 155 (1), 202–222. doi:10.2118/944202-G
  • Le, T.T.H., et al., 2017. Räumliche und zeitliche Variabilität der Wassermenge und Wasserqualität des Thi-Vai-Einzugsgebietes in Südvietnam – datenanalyse eines Monitoringprogramms. Hydrologie & Wasserbewirtschaftung, 61 (6), 370–382.
  • Leij, F., et al., 1996. The UNSODA unsaturated soil hydraulic database: user’s manual. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.
  • Liu, Y.Y., et al., 2011. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 15 (2), 425–436. doi:10.5194/hess-15-425-2011
  • Loh, W.-L., 1996. On Latin hypercube sampling. The Annals of Statistics, Singapore, 24 (5), 2058–2080. doi:10.1214/aos/1069362310
  • López López, P., et al., 2016. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations. Hydrology and Earth System Sciences, 20 (7), 3059–3076. doi:10.5194/hess-20-3059-2016
  • Lorenz, M., et al., 2014. Ecohydrological modeling of the Thi Vai Catchment in South Vietnam. In: G. Meon, et al., ed., EWATEC-COAST: technologies for environmental and water protection of coastal zones in vietnam. contributions to 4th international conference for environment and natural resources, ICENR 2014. Göttingen, Niedersachs: Cuvillier, E, 1–9
  • Lorenz, M., 2015. Entwicklung eines ökohydrologischen Modellsystems auf der Einzugsgebietsskala und Anwendung in den sommerfeuchten Tropen. Braunschweig: Technische Universität Braunschweig.
  • Loucks, D.P., et al., 2005. Water resources systems planning and management. An introduction to methods, models and applications. Paris: UNESCO.
  • Löw, A., Bach, H., and Mauser, W., 2007. 5 years of ENVISAT ASAR soil moisture observations in southern germany. In: Proc. ENVISAT Symposium 23–27.04.2007, Montreux, Switzerland. ESA-SP636.
  • LWI-HYWAG und IfW, 2012. Panta Rhei Benutzerhandbuch - Programmdokumentation zur hydrologischen Modellsoftware (unveröffentlicht).
  • Madsen, H. and Khu, S., 2006. On the use of Pareto optimization for multi-criteria calibration of hydrological models. IAHS Publication, 304, 93.
  • Maxwell, R.M., Condon, L.E., and Kollet, S.J., 2015. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geoscientific Model Development, 8 (3), 923–937. doi:10.5194/gmd-8-923-2015
  • McKay, M.D., Beckman, R.J., and Conover, W.J., 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21 (2), 239.
  • Meon, G., et al., 2015. Innovative Hochwasservorhersage für kleine und mittlere Einzugsgebiete. In: M. Evers and B. Diekkrüger, eds..Forum für Hydrologie und Wasserbewirtschaftung. Aktuelle Herausforderungen im Flussgebiets- und Hochwassermanagement, Beiträge zum Tag der Hydrologie am 19./20. März 2015 an der Universität Bonn. Hennef, 287–296
  • Meon, G., et al., 2017. Entwicklung einer Basisversion eines Managementsystems für die regionale Wasserwirtschaft einer Küstenzone in Vietnam. Hydrologie & Wasserbewirtschaftung, 61 (6), 437–449.
  • Meon, G., Pätsch, M., and van Phuoc, N., 2014. EWATEC-COAST: technologies for environmental and water protection of coastal regions in vietnam. Contributions to 4th international conference for environment and natural resources—ICENR 2014. 1st ed. Göttingen, Niedersachs: Cuvillier, E.
  • Merz, R., Parajka, J., and Blöschl, G., 2011. Time stability of catchment model parameters. Implications for climate impact analyses. Water Resources Research, 47 (2), 17. doi:10.1029/2010WR009505
  • Meyer, S., 2013. Operationelle Hochwasservorhersage in Niedersachsen mit dem Wasserhaushaltsmodell PANTA RHEI. In: M. Casper, et al., eds.. Simulation hydrologischer Systeme - wie nah kommen wir der Realität? Beiträge zum 3. Trierer Workshop zur Niederschlag-Abfluss-Modellierung am 17. und 18. September 2012 in Trier. Hennef: Dt. Vereinigung für Wasserwirtschaft, Abwasser und Abfall, 287–296
  • Mladenova, I., et al., 2010. Validation of the ASAR global monitoring mode soil moisture product using the NAFE’05 data set. IEEE Transactions on Geoscience and Remote Sensing, 48 (6), 2498–2508. doi:10.1109/TGRS.2010.2040746
  • Monteith, J.L., 1965. Evaporation and environment. In: G.E. Fogg, ed. The state and movement of water in living organisms. Cambridge: Cambridge University Press, 205–234.
  • Muttil, N. and Jayawardena, A.W., 2008. Shuffled Complex Evolution model calibrating algorithm: enhancing its robustness and efficiency. Hydrological Processes, 22 (23), 4628–4638. doi:10.1002/hyp.v22:23
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I: a discussion of principles. Elsevier.
  • Nelder, J.A. and Mead, R., 1965. A simplex method for function minimization. The Computer Journal, 7 (4), 308–313. doi:10.1093/comjnl/7.4.308
  • Nemes, A., et al., 2001. Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of Hydrology, 251 (3–4), 151–162. doi:10.1016/S0022-1694(01)00465-6
  • Parajka, J., et al., 2006. Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrology and Earth System Sciences, 10 (3), 353–368. doi:10.5194/hess-10-353-2006
  • Parajka, J., et al., 2009. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrology and Earth System Sciences, 13 (2), 259–271. doi:10.5194/hess-13-259-2009
  • Pathe, C., et al., 2009. Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Transactions on Geoscience and Remote Sensing, 47 (2), 468–480. doi:10.1109/TGRS.2008.2004711
  • Pellarin, T., Calvet, J.-C., and Wagner, W., 2006. Evaluation of ERS scatterometer soil moisture products over a half-degree region in southwestern France. Geophysical Research Letters, 33, 17. doi:10.1029/2006GL027231
  • Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193 (1032), 120–145.
  • Price, W.L., 1987. Global optimization algorithms for a CAD workstation. Journal of Optimization Theory and Applications, 55 (1), 133–146. doi:10.1007/BF00939049
  • Qu, W., 2014. Characterization of soil water content variability at the catchment scale using sensor network and stochastic modelling. Dissertation. Forschungszentrum Jülich.
  • Qu, W., et al., 2015. Predicting subgrid variability of soil water content from basic soil information. Geophysical Research Letters, 42 (3), 789–796. doi:10.1002/2014GL062496
  • Riedel, G., et al., 2017. Erfahrung mit Radarprodukten bei der operationellen Hochwasservorhersage in Niedersachsen. KW - Korrespondenz Wasserwirtschaft, 10 (11), 664–671.
  • Rosnay, P.D., et al., 2013. A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF. Quarterly Journal of the Royal Meteorological Society, 139 (674), 1199–1213. doi:10.1002/qj.2023
  • Schaap, M.G., van Leij, J.F., and van Genuchten, M.T., 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251 (3–4), 163–176. doi:10.1016/S0022-1694(01)00466-8
  • Schewe, J., et al., 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 111 (9), 3245–3250. doi:10.1073/pnas.1222460110
  • Seibert, J., 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences, 4 (2), 215–224. doi:10.5194/hess-4-215-2000
  • Seibert, J. and McDonnell, J.J., 2002. On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research, 38 (11). 23-1-23-14. doi:10.1029/2001WR000978
  • Sentelhas, P.C., Gillespie, T.J., and Santos, E.A., 2010. Evaluation of FAO Penman–monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97 (5), 635–644. doi:10.1016/j.agwat.2009.12.001
  • Skamarock, W.C., et al., 2008. A description of the advanced research WRF version 3, 27, 3–27. NCAR. doi:10.5065/D68S4MVH
  • Sponagel, H., 2005. Bodenkundliche Kartieranleitung. Mit 103 Tabellen. 5th ed. Stuttgart: Schweizerbart.
  • Sutanudjaja, E.H., et al., 2014. Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data. Water Resources Research, 50 (1), 687–705. doi:10.1002/2013WR013807
  • Sutanudjaja, E.H., et al., 2018. PCR-GLOBWB 2. A 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11 (6), 2429–2453. doi:10.5194/gmd-11-2429-2018
  • Van Beek, L.P. and Bierkens, M.F., 2008. The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. Utrecht: Utrecht University.
  • van der Knijff, J.M., Younis, J., and Roo, A.P.J.D., 2010. LISFLOOD. A GIS‐based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science, 24 (2), 189–212. doi:10.1080/13658810802549154
  • van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44 (5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x
  • Viera, S.R., et al., 2011. Characterizing the spatial variability of soil hydraulic properties of a poorly drained soil. World Applied Sciences Journal, 12 (6), 732–741.
  • Wagner, W., et al., 1999a. A study of vegetation cover effects on ERS scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 37 (2), 938–948. doi:10.1109/36.752212
  • Wagner, W., Lemoine, G., and Rott, H., 1999b. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70 (2), 191–207. doi:10.1016/S0034-4257(99)00036-X
  • Wanders, N., et al., 2014. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resources Research, 50 (8), 6874–6891. doi:10.1002/2013WR014639
  • Wurpts, A., 2014. Forschungsthema 7: küste und Küstenschutz – A-Küst. In: F. Beese, et al., eds.. Abschlussbericht des Forschungsverbundes KLIFF – august 2014. Göttingen: Niedersächsisches Ministerium für Wissenschaft und Kultur, 84–103
  • Xu, C., et al., 2005. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation. Ecological Modelling, 185 (2–4), 255–269. doi:10.1016/j.ecolmodel.2004.12.009
  • Yu, P.-S., Yang, T.-C., and Chen, S.-J., 2001. Comparison of uncertainty analysis methods for a distributed rainfall–runoff model. Journal of Hydrology, 244 (1–2), 43–59. doi:10.1016/S0022-1694(01)00328-6
  • Zeunert, S., et al., 2017. Modellgestützte Untersuchungen der Auswirkungen des Klimawandels und fortschreitender anthropogener Entwicklungen auf die Wasserqualität des tropischen Thi-Vai-Ästuars. Hydrologie & Wasserbewirtschaftung, 61 (6), 424–436.
  • Zhang, X., et al., 2009. Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Processes, 23 (3), 430–441. doi:10.1002/hyp.7152
  • Zhu, J. and Mohanty, B.P., 2002. Spatial averaging of van Genuchten hydraulic parameters for steady-state flow in heterogeneous soils: a numerical study. Vadose Zone Journal, 1 (2), 261–272. doi:10.2136/vzj2002.2610
  • Zhu, J., Young, M.H., and van Genuchten, M.T., 2007. Upscaling schemes and relationships for the Gardner and van Genuchten hydraulic functions for heterogeneous soils. Vadose Zone Journal, 6 (1), 186. doi:10.2136/vzj2006.0041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.