688
Views
6
CrossRef citations to date
0
Altmetric
Articles

Modelling hydrological processes and nutrient retention in plain polders

ORCID Icon &
Pages 835-844 | Received 18 Sep 2017, Accepted 14 Feb 2019, Published online: 09 May 2019

References

  • Bosch, N.S., 2008. The influence of impoundments on riverine nutrient transport: an evaluation using the soil and water assessment tool. Journal of Hydrology, 355 (1–4), 131–147. doi:10.1016/j.jhydrol.2008.03.012
  • Chang, N., Xuan, Z., and Wanielista, M.P., 2012. A tracer study for assessing the interactions between hydraulic retention time and transport processes in a wetland system for nutrient removal. Bioprocess and Biosystems Engineering, 35 (3), 399–406. doi:10.1007/s00449-011-0578-z
  • Chu, Y., et al., 2010. Nutrient export from a typical polder area around Chao Lake during rice growing period in the summer. Jounal of Soil and Water Conservation, 24 (5), 135–140.
  • Duke, G.D., et al., 2003. Improving overland flow routing by incorporating ancillary road data into digital elevation models. Journal of Spatial Hydrology, 3 (2), 1–27.
  • Engelhardt, C., et al., 1999. Input-output balances of nutrients and plankton in a flooded area of the lower Odra. Acta Hydrochimica et Hydrobiologica, 27 (5), 325–330. doi:10.1002/(SICI)1521-401X(199911)27:5<325::AID-AHEH325>3.0.CO;2-A
  • Grizzetti, B., et al., 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modelling, 169 (1), 25–38. doi:10.1016/S0304-3800(03)00198-4
  • Haas, M.B., Guse, B., and Fohrer, N., 2017. Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management, 196, 347–364. doi:10.1016/j.jenvman.2017.02.060
  • He, J., et al., 2010. Experiments on nitrogen and phosphorus losses from paddy fields under different scales. Transactions of the CSAE, 26 (10), 56–62.
  • Hesse, C., et al., 2008. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, 218 (1–2), 135–148. doi:10.1016/j.ecolmodel.2008.06.035
  • Huang, J., et al., 2018. Towards the development of a modeling framework to track nitrogen export from lowland artificial watersheds (polders). Water Research, 133, 319–337. doi:10.1016/j.watres.2018.01.011
  • Huang, J., Gao, J., and Yan, R., 2017. A phosphorus dynamic model for lowland polder systems (PDP). Ecological Engineering, 88, 242–255. doi:10.1016/j.ecoleng.2015.12.033
  • JBQTS (Jiangxi Bureau of Quality and Technical Supervision), 2011. Agricultural irrigation water quota of Jiangxi Province, DB36/T619-2011.
  • Krause, S., Jacobs, J., and Bronstert, A., 2007. Modelling the impacts of land-use and drainage density on the water balance of a lowland-floodplain landscape in northeast Germany, C-4351-2008. Ecological Modelling, 200 (3–4), 475–492. doi:10.1016/j.ecolmodel.2006.08.015
  • Kröger, R., et al., 2008. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability. Journal of Environmental Quality, 37 (1), 107–113. doi:10.2134/jeq2006.0505
  • Lai, Z., et al., 2018. Development of a polder module in the SWAT model: SWATpld for simulating polder areas in south-eastern China. Hydrological Processes, 32, 1050–1062. doi:10.1002/hyp.v32.8
  • Lam, Q.D., Schmalz, B., and Fohrer, N., 2010. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management, 97 (2), 317–325. doi:10.1016/j.agwat.2009.10.004
  • Lam, Q.D., Schmalz, B., and Fohrer, N., 2012. Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany. Journal of Hydrology, 438-439 (2012), 137–147. doi:10.1016/j.jhydrol.2012.03.011
  • Luo, Y.X., et al., 2013. Identifying and modeling confined hydrological processes in plain polders. Resources Science, 35 (3), 594–600. [in Chinese with English abstract].
  • Martz, L. and Garbrecht, J., 2011. Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers and Geosciences, 18, 747–761. doi:10.1016/0098-3004(92)90007-E
  • Neitsch, S.L., et al., 2005. Soil and water assessment tool theoretical documentation. Temple, TX: Blackland Research Center, Texas Agricultural Experiment Station.
  • Ogden, F.L., et al., 2001. GIS and distributed watershed models. II: modules, interfaces and models. Journal of Hydrologic Engineering, 6 (6), 515–523. doi:10.1061/(ASCE)1084-0699(2001)6:6(515)
  • Panagopoulos, Y., et al., 2011. SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecological Modelling, 222 (19), 3500–3512. doi:10.1016/j.ecolmodel.2011.08.008
  • Schmalz, B., Tavares, F., and Fohrer, N., 2007. Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Advances in Geosciences, 11, 107–112. doi:10.5194/adgeo-11-107-2007
  • Schmalz, B., Tavares, F., and Fohrer, N., 2008. Modelling hydrological processes in mesoscale lowland river basins with SWAT—capabilities and challenges. Hydrological Sciences Journal, 53 (5), 989–1000. doi:10.1623/hysj.53.5.989
  • Song, S., Schmalz, B., and Fohrer, N., 2015. Simulation, quantification and comparison of in-channel and floodplain sediment processes in a lowland area – A case study of the Upper Stör catchment in northern Germany. Ecological Indicators, 57, 118–127. doi:10.1016/j.ecolind.2015.03.030
  • Torgersen, T., Branco, B., and Bean, J., 2004. Chemical retention processes in ponds. Environmental Engineering Science, 21 (2), 149–156. doi:10.1089/109287504773087327
  • Wang, Q., et al., 2018. Effects of dynamic land use inputs on improvement of SWAT model performance and uncertainty analysis of outputs. Journal of Hydrology, 563, 874–886. doi:10.1016/j.jhydrol.2018.06.063
  • Xue, L.J., Li, L.J., and Zhang, Q., 2008. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin. Water Science and Engineering, 1 (3), 44–53. doi:10.3882/j.issn.1674-2370.2008.03.005
  • Yan, R., Gao, J., and Huang, J., 2016. WALRUS-paddy model for simulating the hydrological processes of lowland polders with paddy fields and pumping stations. Agricultural Water Management, 169, 148–161. doi:10.1016/j.agwat.2016.02.018
  • Yan, R., Li, L., and Gao, J., 2018. Modelling the regulation effects of lowland polder with pumping station on hydrological processes and phosphorus loads. Science of the Total Environment, 637–638, 200–207. doi:10.1016/j.scitotenv.2018.04.389
  • Zadeh, F.K., et al., 2017. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environmental Modelling & Software, 91, 210–222. doi:10.1016/j.envsoft.2017.02.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.