451
Views
7
CrossRef citations to date
0
Altmetric
Articles

Response of drip water temperature to climate variability: a case study in Xiaoyan Cave, southwest China

, , , , , , & show all
Pages 873-884 | Received 14 Sep 2017, Accepted 13 Mar 2019, Published online: 13 May 2019

References

  • Atkinson, T.C., Smart, P.L., and Wigley, T.M.L., 1983. Climate and natural radon levels in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arctic and Alpine Research, 15, 487–502. doi:10.2307/1551235
  • Badino, G., 2004. Cave temperatures and global climatic change. International Journal of Speleology, 33, 103–113. doi:10.5038/1827-806X
  • Bonacci, O., Trninić, D., and Roje-Bonacci, T., 2008. Analysis of the water temperature regime of the Danube and its tributaries in Croatia. Hydrological Processes, 22, 1014–1021. doi:10.1002/(ISSN)1099-1085
  • Breitenbach, S.F.M., et al., 2015. Cave ventilation and rainfall signals in dripwater in a monsoonal setting- a mnitoring study from NE India. Chemical Geology, 402, 111–124. doi:10.1016/j.chemgeo.2015.03.011
  • Covington, M.D., et al., 2011. Mechanisms of heat exchange between water and rock in karst conduits. Water Resources Research, 47, W10514. doi:10.1029/2011WR010683
  • Cuthbert, M.O., et al., 2014a. Evaporative cooling of speleothem drip water. Scientific Reports, 4 (1), 5162. doi:10.1038/srep05162
  • Cuthbert, M.O., et al., 2014b. Drip water isotopes in semi-arid karst: implications for speleothem paleoclimatology. Earth and Planetary Science Letters, 395, 194–204. doi:10.1016/j.epsl.2014.03.034
  • De Freitas, C.R., et al., 1982. Cave climate: assessment of airflow and ventilation. Journal of Climatology, 2, 383–397. doi:10.1002/joc.v2:4
  • De Freitas, C.R. and Littlejohn, R.N., 1987. Cave climate: assessment of heat and moisture exchange. Journal of Climatology, 7, 553–569. doi:10.1002/joc.v7:6
  • De Freitas, C.R. and Schmekal, A., 2003. Condensation as a microclimate process: measurement, numerical simulation and prediction in the Glowworm Cave, New Zealand. International Journal of Climatology, 23 (5), 557–575. doi:10.1002/(ISSN)1097-0088
  • Domínguez-Villar, D., et al., 2013. Reconstruction of cave air temperature based on surface atmosphere temperature and vegetation changes: implications for speleothem palaeoclimate records. Earth and Planetary Science Letters, 369–370, 158–168. doi:10.1016/j.epsl.2013.03.017
  • Domínguez-Villar, D., et al., 2015. Is global warming affecting cave temperatures? Experimental and model data from a paradigmatic case study. Climate Dynamics, 45, 569–581. doi:10.1007/s00382-014-2226-1
  • Drake, J.J. and Wigley, T.M.L., 1975. The effect of climate on the chemistry of carbonate groundwater. Water Resources Research, 11, 958–962. doi:10.1029/WR011i006p00958
  • Faimon, J., et al., 2012. Air circulation and its impact on microclimatic variables in the Cisarska Cave (Moravian Karst, Czech Republic). International Journal of Climatology, 32, 599–623. doi:10.1002/joc.v32.4
  • Faimon, J. and Lang, M., 2013. Variances in airflows during different ventilation modes in a dynamic U-shaped cave. International Journal of Speleology, 42, 115–122. doi:10.5038/1827-806X
  • Fairchild, I.J., et al., 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75, 105–153. doi:10.1016/j.earscirev.2005.08.003
  • Fairchild, I.J. and Baker, A., 2012a. Speleothem science. London: Wiley-Blackwell. Transfer processes in karst. In chap 4, 122–127.
  • Fairchild, I.J. and Baker, A., 2012b. Speleothem science: from processes to past environment. London: Wiley-Blackwell. Heat flux. In chap 4, 137–145.
  • Fernández, P.L., et al., 1986. Natural ventilation of the Paintings Room in the Altamira cave. Nature, 321, 586–588. doi:10.1038/321586a0
  • Gázquez, F., Calaforra, J.M., and Fernández-Cortés, Á., 2016. Flash flood events recorded by air temperature changes in caves: A case study in Covadura Cave (SE Spain). Journal of Hydrology, 541, 136–145. doi:10.1016/j.jhydrol.2015.10.059
  • Genthon, P., et al., 2005. Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at La Peyrére cave (Ariège, France). Journal of Hydrology, 311, 157–171. doi:10.1016/j.jhydrol.2005.01.015
  • Guo, X.J., et al., 2014. Analysis to hydrological process of drip water in the aeration zone of a typical karst stone hill. Carsologica Sinica, 33, 176–183.
  • Guo, X.J., et al., 2015. Recharge processes on typical karst slopes implied by isotopic and hydrochemical indexes in Xiaoyan Cave, Guilin, China. Journal of Hydrology, 530, 612–622. doi:10.1016/j.jhydrol.2015.09.065
  • Guo, X.J., et al., 2017. Research on hydrological processes of Cave dripping water in a typical karst vadose zone: a case study of Xiaoyan Cave, Guilin. Acta Geoscientica Sinica, 38, 537–548.
  • Hoyos, M., et al., 1998. Microclimatic characterization of a karst cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environmental Geology, 33, 231–242. doi:10.1007/s002540050242
  • Isaak, D.J., et al., 2012. Climate change effects on stream and river temperatures across the northwest U.S. From 1980-2009 and implications for salmonid fishes. Climatic Change, 113, 499–524. doi:10.1007/s10584-011-0326-z
  • James, E.W., Banner, J.L., and Hardt, B., 2015. A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochemistry, Geophysics, Geosystems, 16, 1044–1051. doi:10.1002/2014GC005658
  • Kowalczk, A.J., et al., 2008. High resolution time series cave ventilation processes and the effects on cave air chemistry and drip waters: speleoclimatology and proxy calibration. American Geophysical Union, Fall Meeting.
  • Kowalczk, A.J. and Froelich, P.N., 2010. Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? Earth and Planetary Science Letters, 289, 209–219. doi:10.1016/j.epsl.2009.11.010
  • Kurylyk, B.L., et al., 2015. Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling. Hydrology and Earth System Sciences, 19, 2469–2489. doi:10.5194/hess-19-2469-2015
  • Liu, Z.H., et al., 2004. Hydrochemical variations during flood pulses in the south-west China peak cluster karst: impacts of CaCO3-H2O-CO2 in teractions. Hydrological Processes, 18, 2423–2437. doi:10.1002/(ISSN)1099-1085
  • Liu, Z.H., Liu, X.L., and Liao, C.J., 2008. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: insights from high time-resolution monitoring of physico-chemistry of water. Environmental Geology, 55, 1159–1168. doi:10.1007/s00254-007-1062-6
  • Luetscher, M. and Jeannin, P.-Y., 2004a. The role of winter air circulations for the presence of subsurface ice accumulations: an example from Monlesi ice cave (Switzerland). Theoretical and Applied Karstology, 17, 19–25.
  • Luetscher, M. and Jeannin, P.-Y., 2004b. Temperature distribution in karst systems: the role of air and water fluxes. Terra Nova, 16, 344–350. doi:10.1111/ter.2004.16.issue-6
  • Luetscher, M., Lismonde, B., and Jeannin, P.-Y., 2008. Heat exchanges in the heterothermic zone of a karst system: monlesi cave, Swiss Jura Mountains. Journal of Geophysical Research, 113, 1–13. doi:10.1029/2007JF000892
  • Markowska, M., et al., 2016. Semi-arid zone caves: evaporation and hydrological controls on δ18O drip water composition and implications for speleothem paleoclimate reconstructions. Quaternary Science Reviews, 131, 285–301.
  • Mohseni, O. and Stefan, H.G., 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218, 128–141. doi:10.1016/S0022-1694(99)00034-7
  • Motta, L. and Motta, M., 2015. The climate of the Borna Maggiore di Pugnetto Cave (Lanzo Valley, Western Italian Alps). Universal Journal of Geoscience, 3, 90–102. doi:10.13189/ujg.2015.030303
  • Oster, J.L., Montañez, I.P., and Kelley, N.P., 2012. Response of a modern cave system to large seasonal precipitation variability. Geochimica et Cosmochimica Acta, 91, 92–108. doi:10.1016/j.gca.2012.05.027
  • Pflitsch, A. and Piasecki, J., 2003. Detection of an airflow system in Niedzwiedzia (Bear) Cave, Kletno, Poland. Journal of Cave and Karst Studies, 65 (3), 160–173.
  • Rau, G.C., et al., 2015. Controls on cave drip water temperature and implications for speleothem-based paleoclimate reconstructions. Quaternary Science Reviews, 127, 19–36.
  • Šebela, S. and Turk, J., 2011. Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theoretical and Applied Climatology, 105, 371–386. doi:10.1007/s00704-011-0397-9
  • Smithson, P.A., 1991. Inter-relationships between cave and outside air temperatures. Theoretical and Applied Climatology, 44, 65–73. doi:10.1007/BF00865553
  • Smithson, P.A., 1993. Vertical temperature structure in a cave environment. Geoarchaeology: An International Journal, 8, 229–240. doi:10.1002/(ISSN)1520-6548
  • Sondag, F., et al., 2003. Monitoring present day climatic conditions in tropical caves using an Environmental Data Acquisition System (EDAS). Journal of Hydrology, 273, 103–118. doi:10.1016/S0022-1694(02)00362-1
  • Stoeva, P., Stoev, A., and Kiskinova, N., 2006. Long-term changes in the cave atmosphere air temperature as a result of periodic heliophysical processes. Physics and Chemistry of the Earth, 31, 123–128. doi:10.1016/j.pce.2005.05.001
  • Tague, C., et al., 2007. Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon. Hydrological Processes, 21, 3288–3300. doi:10.1002/(ISSN)1099-1085
  • Webb, B.W., et al., 2008. Recent advances in stream and river temperature research. Hydrological Processes, 22, 902–918. doi:10.1002/(ISSN)1099-1085
  • Wigley, T.M.L. and Brown, M.C., 1971. Geophysical applications of heat and mass transfer in turbulent pipe flow. Boundary-Layer Meteorology, 1, 300–320. doi:10.1007/BF02186034
  • Yuan, D.X., et al., 1990. Hydrology of the karst aquifer at the experimental site of Guilin in Southern China. Journal of Hydrology, 115, 285–296. doi:10.1016/0022-1694(90)90210-O
  • Yuan, D.X., et al., 1996. Karst water system of a peak cluster catchment in South China’s bare karst region and its mathematic model. Guilin: Guangxi normal university publishing house.
  • Zajíček, A., et al., 2011. Drainage water temperature as a basis for verifying drainage runoff composition on slopes. Hydrological Processes, 25, 3204–3215. doi:10.1002/hyp.v25.20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.