858
Views
12
CrossRef citations to date
0
Altmetric
Articles

On the use of mean monthly runoff to predict the flow–duration curve in ungauged catchments

, &
Pages 1573-1587 | Received 09 Feb 2018, Accepted 16 Jul 2019, Published online: 27 Sep 2019

References

  • Ameli, A.A., Craig, J.R., and McDonnell, J.J., 2015. Are all runoff processes the same? Numerical experiments comparing a Darcy‐Richards solver to an overland flow‐based approach for subsurface storm runoff simulation. Water Resources Research, 51 (12), 10008–10028. doi:10.1002/2015WR017199
  • Ameli, A.A., McDonnell, J.J., and Bishop, K., 2016. The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution. Hydrological Processes, 30 (14), 2438–2450. doi:10.1002/hyp.v30.14
  • Atieh, M., et al., 2017. Prediction of flow duration curves for ungauged basins. Journal of Hydrology, 545, 383–394. doi:10.1016/j.jhydrol.2016.12.048
  • Barthold, F.K. and Woods, R.A., 2015. Stormflow generation: a meta‐analysis of field evidence from small, forested catchments. Water Resources Research, 51 (5), 3730–3753. doi:10.1002/2014WR016221
  • Berghuijs, W.R., et al., 2014. Patterns of similarity of seasonal water balances: a window into streamflow variability over a range of time scales. Water Resources Research, 50 (7), 5638–5661. doi:10.1002/2014WR015692
  • Beven, K., 1989. Changing ideas in hydrology—the case of physically-based models. Journal of Hydrology, 105 (1–2), 157–172. doi:10.1016/0022-1694(89)90101-7
  • Beven, K., 2000. On the future of distributed modelling in hydrology. Hydrological Processes, 14 (16‐17), 3183–3184. doi:10.1002/1099-1085(200011/12)14:16/17<3183::AID-HYP404>3.0.CO;2-K
  • Blöschl, G., et al., eds. 2013. Runoff prediction in ungauged basins: synthesis across processes, places and scales. Cambrigdem, UK: Cambridge University Press.
  • Booker, D.J. and Snelder, T.H., 2012. Comparing methods for estimating flow duration curves at ungauged sites. Journal of Hydrology, 434, 78–94. doi:10.1016/j.jhydrol.2012.02.031
  • Botter, G., et al., 2007a. Basin‐scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: slow, leaching‐prone components of the hydrologic response. Water Resources Research, 43 (2). doi:10.1029/2006WR005043
  • Botter, G., et al., 2007b. Probabilistic characterization of base flows in river basins: roles of soil, vegetation, and geomorphology. Water Resources Research, 43 (6). doi:10.1029/2006WR005397
  • Botter, G., et al., 2009. Nonlinear storage‐discharge relations and catchment streamflow regimes. Water Resources Research, 45 (10), W10427. doi:10.1029/2008WR007658
  • Botter, G., et al., 2010. Natural streamflow regime alterations: damming of the Piave river basin (Italy). Water Resources Research, 46 (6), W06522. doi:10.1029/2009WR008523
  • Buttle, J.M., 1994. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography, 18 (1), 16–41. doi:10.1177/030913339401800102
  • Castellarin, A., et al., 2004. Regional flow-duration curves: reliability for ungauged basins. Advances in Water Resources, 27 (10), 953–965. doi:10.1016/j.advwatres.2004.08.005
  • Castellarin, A., et al. 2013. Prediction of flow duration curves in ungauged basins. Chapter 7. In: G. Blöschl, ed. Runoff prediction in ungauged basins: synthesis across processes, places and scales. Cambridge, UK: Cambridge University Press, 135–162.
  • Castellarin, A., 2014. Regional prediction of flow–duration curves using a three-dimensional kriging. Journal of Hydrology, 513, 179–191. doi:10.1016/j.jhydrol.2014.03.050
  • Castellarin, A., et al., 2018. Prediction of streamflow regimes over large geographical areas: interpolated flow–duration curves for the Danube region. Hydrological Sciences Journal, 63 (6), 845–861. doi:10.1080/02626667.2018.1445855
  • Ceola, S., et al., 2010. Comparative study of ecohydrological streamflow probability distributions. Water Resources Research, 46 (9), W09502. doi:10.1029/2010WR009102
  • Chouaib, W., Caldwell, P.V., and Alila, Y., 2018. Regional variation of flow duration curves in the eastern USA: process-based analyses of the interaction between climate and landscape properties. Journal of Hydrology, 559, 327–346. doi:10.1016/j.jhydrol.2018.01.037
  • Claps, P. and Fiorentino, M., 1997. Probabilistic flow duration curves for use in environmental planning and management. Integrated approach to environmental data management systems. NATO-ASI Series, 2 (31), 255–266.
  • Coopersmith, E., et al., 2012. Exploring the physical controls of regional patterns of flow duration curves–Part 3: a catchment classification system based on regime curve indicators. Hydrology and Earth System Sciences, 16 (11), 4467–4482. doi:10.1029/2010WR009286
  • Duan, Q., et al., 2006. Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. Journal of Hydrology, 320 (1), 3–17. doi:10.1016/j.jhydrol.2005.07.031
  • Evaristo, J. and McDonnell, J.J., 2017. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Scientific Reports, 7, 44110. doi:10.1038/srep44110
  • Feser, F., et al., 2011. Regional climate models add value to global model data: a review and selected examples. Bulletin of the American Meteorological Society, 92 (9), 1181–1192. doi:10.1175/2011BAMS3061.1
  • Ganora, D., et al., 2009. An approach to estimate nonparametric flow duration curves in ungauged basins. Water Resources Research, 45 (10), W10418. doi:10.1029/2008WR007472
  • Grayson, R.B., et al., 2002. Advances in the use of observed spatial patterns of catchment hydrological response. Advances in Water Resources, 25 (8–12), 1313–1334. doi:10.1016/S0309-1708(02)00060-X
  • Greenland, S., Lash, T.L., and Rothman, K.J., 2008. Modern epidemiology. Philadelphia, PA: Lippincott Williams & Wilkins, 283–302.
  • Holmes, M.G.R., et al., 2002. A region of influence approach to predicting flow duration curves within ungauged catchments. Hydrology and Earth System Sciences Discussions, 6 (4), 721–731. doi:10.5194/hess-6-721-2002
  • Hrachowitz, M., et al., 2013. A decade of predictions in ungauged basins (PUB)—a review. Hydrological Sciences Journal, 58 (6), 1198–1255. doi:10.1080/02626667.2013.803183
  • Kirchner, J.W., 2009. Catchments as simple dynamical systems: catchment characterization, rainfall‐runoff modeling, and doing hydrology backward. Water Resources Research, 45 (2), W02429. doi:10.1029/2008WR006912
  • Klemeš, V., 1983. Conceptualization and scale in hydrology. Journal of Hydrology, 65 (1–3), 1–23. doi:10.1016/0022-1694(83)90208-1
  • LeBoutillier, D.W. and Waylen, P.R., 1993. A stochastic model of flow duration curves. Water Resources Research, 29 (10), 3535–3541. doi:10.1029/93WR01409
  • McDonnell, J.J., 2003. Where does water go when it rains? Moving beyond the variable source area concept of rainfall–runoff response. Hydrological Processes, 17 (9), 1869–1875. doi:10.1002/(ISSN)1099-1085
  • McDonnell, J.J., 2013. Are all runoff processes the same? Hydrological Processes, 27 (26), 4103–4111. doi:10.1002/hyp.v27.26
  • Merheb, M., et al., 2016. Hydrological response characteristics of mediterranean catchments at different time scales: a meta-analysis. Hydrological Sciences Journal, 61 (14), 2520–2539. doi:10.1080/02626667.2016.1140174
  • Moore, R.D., 1997. Storage-outflow modeling of streamflow recessions, with application to a shallow-soil forested catchment. Journal of Hydrology, 198 (1), 260–270. doi:10.1016/S0022-1694(96)03287-8
  • Muneepeerakul, R., et al., 2010. Daily streamflow analysis based on a two‐scaled gamma pulse model. Water Resources Research, 46 (11), W11546. doi:10.1029/2010WR009286
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Niehoff, D., Fritsch, U., and Bronstert, A., 2002. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. Journal of Hydrology, 267 (1–2), 80–93. doi:10.1016/S0022-1694(02)00142-7
  • Nijssen, B., et al., 2001. Predicting the discharge of global rivers. Journal of Climate, 14 (15), 3307–3323. doi:10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2
  • Poff, N.L., et al., 1997. The natural flow regime. BioScience, 47 (11), 769–784. doi:10.2307/1313099
  • Prudhomme, C., Reynard, N., and Crooks, S., 2002. Downscaling of global climate models for flood frequency analysis: where are we now? Hydrological Processes, 16 (6), 1137–1150. doi:10.1002/(ISSN)1099-1085
  • Pugliese, A., et al., 2016. Regional flow duration curves: geostatistical techniques versus multivariate regression. Advances in Water Resources, 96, 11–22. doi:10.1016/j.advwatres.2016.06.008
  • Razavi, T. and Coulibaly, P., 2012. Streamflow prediction in ungauged basins: review of regionalization methods. Journal of Hydrologic Engineering, 18 (8), 958–975. doi:10.1061/(ASCE)HE.1943-5584.0000690
  • Requena, A.I., Ouarda, T.B., and Chebana, F., 2018. Low-flow frequency analysis at ungauged sites based on regionally estimated streamflows. Journal of Hydrology, 563, 523–532. doi:10.1016/j.jhydrol.2018.06.016
  • Sauquet, E. and Catalogne, C., 2011. Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France. Hydrology and Earth System Sciences, 15 (8), 2421. doi:10.5194/hess-15-2421-2011
  • Sawicz, K., et al., 2011. Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 15 (9), 2895–2911. doi:10.5194/hess-15-2895-2011
  • Singh, R.D., Mishra, S.K., and Chowdhary, H., 2001. Regional flow-duration models for large number of ungauged Himalayan catchments for planning microhydro projects. Journal of Hydrologic Engineering, 6 (4), 310–316. doi:10.1061/(ASCE)1084-0699(2001)6:4(310)
  • Sivapalan, M., et al., 2003. Downward approach to hydrological prediction. Hydrological Processes, 17 (11), 2101–2111. doi:10.1002/hyp.v17:11
  • Sivapalan, M., et al., 2005. Linking flood frequency to long‐term water balance: incorporating effects of seasonality. Water Resources Research, 41 (6). doi:10.1029/2004WR003439
  • Sivapalan, M., Wood, E.F., and Beven, K.J., 1990. On hydrologic similarity: 3. A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation. Water Resources Research, 26 (1), 43–58.
  • Smakhtin, V.Y., Hughes, D.A., and Creuse-Naudin, E., 1997. Regionalization of daily flow characteristics in part of the Eastern Cape, South Africa. Hydrological Sciences Journal, 42 (6), 919–936. doi:10.1080/02626669709492088
  • Sood, A. and Smakhtin, V., 2015. Global hydrological models: a review. Hydrological Sciences Journal, 60 (4), 549–565. doi:10.1080/02626667.2014.950580
  • Sorooshian, S., Duan, Q., and Gupta, V.K., 1993. Calibration of rainfall‐runoff models: application of global optimization to the sacramento soil moisture accounting model. Water Resources Research, 29 (4), 1185–1194. doi:10.1029/92WR02617
  • Uhlenbrook, S. and Leibundgut, C., 2002. Process‐oriented catchment modelling and multiple‐response validation. Hydrological Processes, 16 (2), 423–440. doi:10.1002/(ISSN)1099-1085
  • Vandewiele, G.L. and Elias, A., 1995. Monthly water balance of ungauged catchments obtained by geographical regionalization. Journal of Hydrology, 170 (1–4), 277–291. doi:10.1016/0022-1694(95)02681-E
  • Vitvar, T., et al., 2002. Estimation of baseflow residence times in watersheds from the runoff hydrograph recession: method and application in the Neversink watershed, Catskill Mountains, New York. Hydrological Processes, 16 (9), 1871–1877. doi:10.1002/(ISSN)1099-1085
  • Vogel, R.M. and Fennessey, N.M., 1994. Flow-duration curves. I: new interpretation and confidence intervals. Journal of Water Resources Planning and Management, 120 (4), 485–504. doi:10.1061/(ASCE)0733-9496(1994)120:4(485)
  • Vogel, R.M. and Fennessey, N.M., 1995. Flow duration curves II: a review of applications in water resources planning. JAWRA Journal of the American Water Resources Association, 31 (6), 1029–1039. doi:10.1111/jawr.1995.31.issue-6
  • Weiler, M. and Naef, F., 2003. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes, 17 (2), 477–493. doi:10.1002/(ISSN)1099-1085
  • Wood, E.F., Sivapalan, M., and Beven, K., 1990. Similarity and scale in catchment storm response. Reviews of Geophysics, 28 (1), 1–18. doi:10.1029/RG028i001p00001
  • Wood, M.K. and Blackburn, W.H., 1984. An evaluation of the hydrologic soil groups as used in the SCS runoff method on rangelands. Journal of the American Water Resources Association, 20 (3), 379–389. doi:10.1111/jawr.1984.20.issue-3
  • Xie, P. and Arkin, P.A., 1996. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. Journal of Climate, 9 (4), 840–858. doi:10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2
  • Yadav, M., Wagener, T., and Gupta, H., 2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources, 30 (8), 1756–1774. doi:10.1016/j.advwatres.2007.01.005
  • Yaeger, M., et al., 2012. Exploring the physical controls of regional patterns of flow duration curves–Part 4: A synthesis of empirical analysis, process modeling and catchment classification. Hydrology and Earth System Sciences, 16 (11), 4483–4498. doi:10.5194/hess-16-4483-2012
  • Ye, S., et al., 2012. Exploring the physical controls of regional patterns of flow duration curves–Part 2: Role of seasonality, the regime curve, and associated process controls. Hydrology and Earth System Sciences, 16 (11), 4447–4465. doi:10.5194/hess-16-4447-2012
  • Yokoo, Y. and Sivapalan, M., 2011. Towards reconstruction of the flow duration curve: development of a conceptual framework with a physical basis. Hydrology and Earth System Sciences, 15 (9), 2805–2819. doi:10.5194/hess-15-2805-2011
  • Zhang, Z., et al., 2008. Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization. Water Resources Research, 44 (12), 44, W00B04. doi:10.1029/2008WR006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.