951
Views
7
CrossRef citations to date
0
Altmetric
Articles

Evaluation and bias correction of SNODAS snow water equivalent (SWE) for streamflow simulation in eastern Canadian basins

, , &
Pages 1541-1555 | Received 14 Mar 2019, Accepted 06 Jul 2019, Published online: 23 Sep 2019

References

  • Aagaard, K. and Carmack, E.C., 1989. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research, 94, 14485. doi:10.1029/JC094iC10p14485
  • Anctil, F., et al., 2004. A soil moisture index as an auxiliary ANN input for stream flow forecasting. Journal of Hydrology, 286, 155–167. doi:10.1016/j.jhydrol.2003.09.006
  • Anderson, B.T., 2011. Spatial distribution and evolution of a seasonal snowpack in complex terrain: an evaluation of the SNODAS modeling product. MSc thesis. Boise, ID: Boise State University.
  • Andrews, J., 1993. Flooding: Canada water book. Ottawa, ON: Environment Canada.
  • Armstrong, R.L. and Brodzik, M.J., 2001. Recent northern hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors. Geophysical Research Letters, 28, 3673–3676. doi:10.1029/2000GL012556
  • Bair, E.H., et al., 2015. Comparison and error analysis of reconstructed SWE to Airborne Snow Observatory measurements in the Upper Tuolumne Basin, CA. In: Proceedings of Western Snow conference, Grass Valley, CA.
  • Barlage, M., et al., 2010. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. Journal of Geophysical Research, 115, D22101. doi:10.1029/2009JD013470
  • Barnett, T.P., Adam, J.C., and Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309. doi:10.1038/nature04141
  • Beard, L.R., 1992. Hydrology of floods in Canada — A guide to planning and design. Journal of Hydrology, 131, 387–388. doi:10.1016/0022-1694(92)90227-M
  • Berg, A.A. and Mulroy, K.A., 2006. Streamflow predictability in the Saskatchewan/Nelson River basin given macroscale estimates of the initial soil moisture status. Hydrological Sciences Journal, 51, 642–654. doi:10.1623/hysj.51.4.642
  • Bergström, S., 1976. Development and Application of a conceptual runoff model fro Scandinavian catchment. Sweden: Department of Water Resources Engineering, Lund Institute of Technology, University of Lund.
  • Bourennane, H., King, D., and Couturier, A., 2000. Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities. Geoderma, 97, 255–271. doi:10.1016/S0016-7061(00)00042-2
  • BP, 2015. Statistical review of world energy 2015 [online]. Available from: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accessed 2 March 2016].
  • Brocca, L., et al., 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sensing of Environment, 115, 3390–3408. doi:10.1016/j.rse.2011.08.003
  • Brooker, P.I., 1985. Two-dimensional simulation by turning bands. Journal of the International Association for Mathematical Geology, 17, 81–90. doi:10.1007/BF01030369
  • Brown, R. and Tapsoba, D., 2007. Improved mapping of snow water equivalent over Quebec. In: 64th Eastern Snow conference, St. John’s, Newfoundland, Canada. doi:10.1094/PDIS-91-4-0467B
  • Brown, R., Tapsoba, D., and Derksen, C., 2018. Evaluation of snow water equivalent datasets over the Saint-Maurice river basin region of southern Québec. Hydrological Processes, 32, 2748–2764. doi:10.1002/hyp.13221
  • Brown, R.D., 2000. Northern hemisphere snow cover variability and change, 1915–97. Journal of Climate, 13, 2339–2355. doi:10.1175/1520-0442(2000)013<2339:NHSCVA>2.0.CO;2
  • Buttafuoco, G., Caloiero, T., and Coscarelli, R., 2010. Spatial uncertainty assessment in modelling reference evapotranspiration at regional scale. Hydrology and Earth System Sciences, 14, 2319–2327. doi:10.5194/hess-14-2319-2010
  • Buttafuoco, G., et al., 2012. Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environmental Earth Sciences, 66, 1111–1125. doi:10.1007/s12665-011-1317-0
  • Carroll, T.R., et al., 2006. NOAA’s national snow analyses. In: 74th Annual Meeting of the Western Snow conference, Las Cruces, NM, 31–43.
  • Chaloulakou, A., Saisana, M., and Spyrellis, N., 2003. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Science of the Total Environment, 313, 1–13. doi:10.1016/S0048-9697(03)00335-8
  • Chiles, J. and Delfiner, P., 1999. Geostatistics: modeling spatial uncertainty Chiles, J. and Delfiner, P. New York: Wiley, 695.
  • Christakos, G., 1992. Random field models in earth sciences. Elsevier. doi:10.1016/C2009-0-22238-0
  • Clow, D.W., et al., 2012. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrological Processes, 26, 2583–2591. doi:10.1002/hyp.9385
  • Coulibaly, P. and Keum, J., 2016. Snow network design and evaluation for La Grande River Basin. Hamilton, ON: Hydro-Quebec.
  • Deutsch, C.V. and Journel, A.G., 1992. Geostatistical software library and user’s guide (GSLIB). New York: Oxford University Press.
  • Dozier, J., Bair, E.H., and Davis, R.E., 2016. Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdisciplinary Reviews: Water, 3, 461–474. doi:10.1002/wat2.1140
  • Dressler, K.A., Fassnacht, S.R., and Bales, R.C., 2006. A comparison of snow telemetry and snow course measurements in the Colorado River Basin. Journal of Hydrometeorology, 7, 705–712. doi:10.1175/JHM506.1
  • Erxleben, J., Elder, K., and Davis, R., 2002. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrological Processes, 16, 3627–3649. doi:10.1002/hyp.1239
  • Fassnacht, S.R., Dressler, K.A., and Bales, R.C., 2003. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resources Research, 39, 1–10. doi:10.1029/2002WR001512
  • Fierz, C., et al., 2009. The international classification for seasonal snow on the ground. IHP-VII Tech. Doc. Hydrology, 83, 90.
  • Gardner, M.W. and Dorling, S.R., 2000. Statistical surface ozone models: an improved methodology to account for non-linear behaviour. Atmospheric Environment, 34, 21–34. doi:10.1016/S1352-2310(99)00359-3
  • Gingras, D., Adamowski, K., and Pilon, P.J., 1994. Regional flood equations for the provinces of Ontario and Quebec. Journal of the American Water Resources Association, 30, 55–67. doi:10.1111/j.1752-1688.1994.tb03273.x
  • Goovaerts, P., 1997. Geostatistics for natural resources evaluation. New York, NY: Oxford University Press Inc.
  • Guan, B., et al., 2013. Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations. Water Resources Research, 49, 5029–5046. doi:10.1002/wrcr.20387
  • Gyawali, R. and Watkins, D.W., 2013. Continuous hydrologic modeling of snow-affected watersheds in the Great Lakes Basin using HEC-HMS. Journal of Hydrologic Engineering, 18, 29–39. doi:10.1061/(ASCE)HE.1943-5584.0000591
  • Harshburger, B.J., et al., 2010. Spatial interpolation of snow water equivalency using surface observations and remotely sensed images of snow-covered area. Hydrological Processes, 24, n/a–n/a. doi:10.1002/hyp.7590
  • Hedrick, A., et al., 2015. Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements. Cryosphere, 9, 13–23. doi:10.5194/tc-9-13-2015
  • Hydro-Québec, 2015. Sustainability report: setting new sights with our clean energy, Report 14. Hamilton, ON: Hydro-Québec, 75.
  • Irvine, K.N. and Drake, J.J., 1987. Spatial analysis of snow-and rain-generated highflows in Southern Ontario. The Canadian Geographer / Le Géographe Canadien, 31, 140–149. doi:10.1111/j.1541-0064.1987.tb01634.x
  • Javelle, P., Ouarda, T.B.M.J., and Bobée, B., 2003. Spring flood analysis using the flood-duration-frequency approach: application to the provinces of Quebec and Ontario, Canada. Hydrological Processes, 17, 3717–3736. doi:10.1002/hyp.1349
  • Keum, J., et al., 2018. Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design. Journal of Hydrology, 561, 688–701. doi:10.1016/j.jhydrol.2018.04.037
  • Kolstad, E.W., 2017. Causal pathways for temperature predictability from snow depth. Journal of Climate, 30, 9651–9663. doi:10.1175/JCLI-D-17-0280.1
  • Kornelsen, K.C. and Coulibaly, P., 2014. Data-based disaggregation of SMOS soil moisture. In: 2014 IEEE geoscience and remote sensing symposium, IEEE, 3334–3337. doi:10.1109/IGARSS.2014.6947194
  • Leach, J.M., Kornelsen, K.C., and Coulibaly, P., 2018. Assimilation of near-real time data products into models of an urban basin. Journal of Hydrology, 563, 51–64. doi:10.1016/j.jhydrol.2018.05.064
  • Liu, Y., et al., 2015. Blending satellite-based snow depth products with in situ observations for streamflow predictions in the Upper Colorado River Basin. Water Resources Research, 51, 1182–1202. doi:10.1002/2014WR016606
  • Marsh, P. and Woo, M.-K., 1984. Wetting front advance and freezing of meltwater within a snow cover: 1. Observations in the Canadian Arctic. Water Resources Research, 20, 1853–1864. doi:10.1029/WR020i012p01853
  • Matheron, G., 1973. The intrinsic random functions and their applications. Advances in Applied Probability, 5 (3), 439. doi:10.2307/1425829
  • Metsämäki, S., et al., 2002. Improved linear interpolation method for the estimation of snow-covered area from optical data. Remote Sensing of Environment, 82, 64–78. doi:10.1016/S0034-4257(02)00025-1
  • Moreno, J.I.L., Latron, J., and Lehmann, A., 2009. Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrological Processess, 24, n/a–n/a. doi:10.1002/hyp.7564
  • NOAA, 2018. Sea ice and snow cover extent | snow and ice | National Centers for Environmental Information (NCEI) [online]. https://www.ncdc.noaa.gov/snow-and-ice/extent/snow-cover/nhland/1 [Accessed 2 January 2018].
  • NOHRSC (National Operations Hydrologic Remote Sensing Center), 2004. Snow data assimilation system (SNODAS) data products at NSIDC, Version 1 [January 2010–December 2016]. Boulder, CO: National Snow and Ice Data Center (NSIDC). doi:10.7265/N5TB14TC
  • Reichle, R.H. and Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 31, L19501. doi:10.1029/2004GL020938
  • Rivoirard, J., 1994. Introduction to disjunctive kriging and non linear geostatistics. New York, NY: Oxford University Press.
  • Robinson, D.A., Dewey, K.F., and Heim, R.R., 1993. Global snow cover monitoring: an update. Bulletin of the American Meteorological Society, 74, 1689–1696. doi:10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2
  • Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. doi:10.1016/0377-0427(87)90125-7
  • Samuel, J., Coulibaly, P., and Metcalfe, R.A., 2011. Estimation of continuous streamflow in Ontario Ungauged Basins: comparison of regionalization methods. Journal of Hydrologic Engineering, 16, 447–459. doi:10.1061/(ASCE)HE.1943-5584.0000338
  • Samuel, J., Coulibaly, P., and Metcalfe, R.A., 2012. Identification of rainfall–runoff model for improved baseflow estimation in ungauged basins. Hydrological Processess, 26, 356–366. doi:10.1002/hyp.8133
  • Shrubsole, D., et al., 2003. An assessment of flood risk management in Canada. ICLR Research Paper Series no. 28. Toronto, ON: Institute for Catastrophic Loss Reduction.
  • Sospedra-Alfonso, R., Merryfield, W.J., and Kharin, V.V., 2016. Representation of snow in the Canadian seasonal to interannual prediction system. Part II: potential predictability and hindcast skill. Journal of Hydrometeorology, 17, 2511–2535. doi:10.1175/JHM-D-16-0027.1
  • Sousa, S., et al., 2007. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modeling and Software, 22, 97–103. doi:10.1016/j.envsoft.2005.12.002
  • Tapsoba, D., et al., 2005. Apport de la technique du krigeage avec dérive externe pour une cartographie raisonnée de l’équivalent en eau de la neige : application aux bassins de la rivière Gatineau. Canadian Journal of Civil Engineering, 32, 289–297. doi:10.1139/l04-110
  • Van Steenbergen, N. and Willems, P., 2013. Increasing river flood preparedness by real-time warning based on wetness state conditions. Journal of Hydrology, 489, 227–237. doi:10.1016/j.jhydrol.2013.03.015
  • Vann, J., Bertoli, O., and Jackson, S., 2002. An overview of geostatistical simulation for quantifying risk. In: Proceedings of geostatistical association of Australasia symposium “Quantifying Risk and Error” (2002), Perth, Western Australia, 1–12.
  • Vrugt, J.A., et al., 2006. Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model. Journal of Hydrology, 325, 288–307. doi:10.1016/j.jhydrol.2005.10.041
  • Wackernagel, H., 2003. Multivariate Geostatistics. 3rd ed. Berlin, Germany: Springer, 403.
  • Willmott, C.J., et al., 1985. Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90, 8995. doi:10.1029/JC090iC05p08995
  • Wrzesien, M.L., et al., 2017. Comparison of methods to estimate snow water equivalent at the mountain range scale: a case study of the California Sierra Nevada. Journal of Hydrometeorology, 18, 1101–1119. doi:10.1175/JHM-D-16-0246.1
  • Zhang, Y.F. and Yang, Z.L., 2016. Estimating uncertainties in the newly developed multi-source land snow data assimilation system. Journal of Geophysical Research Atmospheres, 121, 8254–8268. doi:10.1002/2015JD024248

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.