534
Views
5
CrossRef citations to date
0
Altmetric
Articles

Assessment of the effectiveness of a multi-site stochastic weather generator on hydrological modelling in the Red Deer River watershed, Canada

&
Pages 1616-1628 | Received 03 Dec 2018, Accepted 16 Jul 2019, Published online: 02 Oct 2019

References

  • Abbaspour, K., et al., 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. doi:10.1016/j.jhydrol.2015.03.027
  • Alodah, A. and Seidou, O., 2019. The adequacy of stochastically generated climate time series for water resources systems risk and performance assessment. Stochastic Environmental Research and Risk Assessment, 33 (1), 253–269. doi:10.1007/s00477-018-1613-2
  • Arsenault, R., et al., 2014. Comparison of stochastic optimization algorithms in hydrological model calibration. Journal of Hydrologic Engineering, 19 (7), 1374–1384. doi:10.1061/(ASCE)HE.1943-5584.0000938
  • Ayadi, M. and Bargaoui, Z., 1998. Modelling of flow of the Miliane River using the CEQUEAU model. Hydrological Sciences Journal/Journal Des Sciences Hydrologiques, 43 (5), 741–758. doi:10.1080/02626669809492170
  • Baigorria, G.A. and Jones, J.W., 2010. GiST: a stochastic model for generating spatially and temporally correlated daily rainfall data. Journal of Climate, 23 (22), 5990–6008. doi:10.1175/2010JCLI3537.1
  • Breinl, K., 2016. Driving a lumped hydrological model with precipitation output from weather generators of different complexity. Hydrological Sciences Journal, 61 (8), 1395–1414. doi:10.1080/02626667.2015.1036755
  • Breinl, K., et al., 2017. Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity? Scientific Reports, 7 (1), 5449. doi:10.1038/s41598-017-05822-y
  • Breinl, K., Turkington, T., and Stowasser, M., 2015. Simulating daily precipitation and temperature: a weather generation framework for assessing hydrometeorological hazards. Meteorological Applications, 22 (3), 334–347. doi:10.1002/met.1459
  • Brissette, F., Khalili, M., and Leconte, R., 2007. Efficient stochastic generation of multi-site synthetic precipitation data. Journal of Hydrology, 345 (3–4), 121–133. doi:10.1016/j.jhydrol.2007.06.035
  • Brown, J.F., et al., 1999. The global land-gover gharacteristics database: the users’ perspective. Photogrammetric Engineering and Remote Sensing, 65 (9), 1069–1074.
  • Burton, A., et al., 2008. RainSim: a spatial-temporal stochastic rainfall modelling system. Environmental Modelling & Software, 23 (12), 1356–1369. doi:10.1016/j.envsoft.2008.04.003
  • Butt, M.J. and Bilal, M., 2011. Application of snowmelt runoff model for water resource management. Hydrological Processes, 25 (24), 3735–3747. doi:10.1002/hyp.v25.24
  • Caron, A., Leconte, R., and Brissette, F., 2008. An improved stochastic weather generator for hydrological impact studies. Canadian Water Resources Journal, 33 (3), 233–256. doi:10.4296/cwrj3303233
  • Chen, J., Brissette, F.P., and Zhang, X.J., 2014. A multi-site stochastic weather generator for daily precipitation and temperature. Transactions of the ASABE, 57 (5), 1375–1391.
  • Chen, J., Brissette, F.P., and Zhang, X.J., 2016. Hydrological modeling using a multisite stochastic weather generator. Journal of Hydrologic Engineering, 21 (2), 04015060. doi:10.1061/(ASCE)HE.1943-5584.0001288
  • Chlumecký, M., Buchtele, J., and Richta, K., 2017. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling. Journal of Hydrology, 553, 350–355. doi:10.1016/j.jhydrol.2017.08.025
  • Confesor, R.B. and Whittaker, G.W., 2007. Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and Pareto optimization. Journal of the American Water Resources Association, 43 (4), 981–989. doi:10.1111/jawr.2007.43.issue-4
  • Dile, Y.T. and Srinivasan, R., 2014. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin. Journal of the American Water Resources Association, 50 (5), 1226–1241. doi:10.1111/jawr.12182
  • Evin, G., Favre, A.-C., and Hingray, B., 2018. Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrology and Earth System Sciences, 22 (1), 655–672. doi:10.5194/hess-22-655-2018
  • Faramarzi, M., et al., 2015. Setting up a hydrological model of Alberta: data discrimination analyses prior to calibration. Environmental Modelling & Software, 74, 48–65. doi:10.1016/j.envsoft.2015.09.006
  • Fortin, J.-P., et al., 2001. Distributed watershed model compatible with remote sensing and GIS data. I: description of model. Journal of Hydrologic Engineering, 6 (2), 91–99. doi:10.1061/(ASCE)1084-0699(2001)6:2(91)
  • Her, Y., Cibin, R., and Chaubey, I., 2015. Application of parallel computing methods for improving efficiency of optimization in hydrologic and water quality modeling. Applied Engineering in Agriculture, 31 (3), 455–468.
  • Karahan, H., Ceylan, H., and Tamer Ayvaz, M., 2007. Predicting rainfall intensity using a genetic algorithm approach. Hydrological Processes, 21 (4), 470–475. doi:10.1002/(ISSN)1099-1085
  • Kerr, J.G. and Cooke, C.A., 2017. Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta. Science of the Total Environment, 596, 427–436.
  • Khalili, M., Brissette, F., and Leconte, R., 2011. Effectiveness of multi-site weather generator for hydrological modeling. Journal of the American Water Resources Association, 47 (2), 303–314.
  • Khalili, M., Leconte, R., and Brissette, F., 2007. Stochastic multisite generation of daily precipitation data using spatial autocorrelation. Journal of Hydrometeorology, 8 (3), 396–412.
  • Koutrouvelis, I.A. and Canavos, G.C., 1999. Estimation in the Pearson type 3 distribution. Water Resources Research, 35 (9), 2693–2704.
  • Leander, R. and Buishand, T.A., 2009. A daily weather generator based on a two-stage resampling algorithm. Journal of Hydrology, 374 (3–4), 185–195.
  • Li, Z., et al., 2017. Links between the spatial structure of weather generator and hydrological modeling. Theoretical and Applied Climatology, 128 (1–2), 103–111.
  • Manfreda, S., et al., 2018. Exploiting the use of physical information for the calibration of a lumped hydrological model. Hydrological Processes, 32 (10), 1420–1433.
  • Mehrotra, R., Srikanthan, R., and Sharma, A., 2006. A comparison of three stochastic multi-site precipitation occurrence generators. Journal of Hydrology, 331 (1–2), 280–292.
  • Mishra, A.K. and Coulibaly, P., 2010. Hydrometric network evaluation for Canadian watersheds. Journal of Hydrology, 380 (3–4), 420–437.
  • Mousavi, S.J., et al., 2012. Uncertainty-based automatic calibration of HEC-HMS model using sequential uncertainty fitting approach. Journal of Hydroinformatics, 14 (2), 286–309.
  • Muleta, M.K. and Nicklow, J.W., 2005. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology, 306 (1), 127–145.
  • Nachtergaele, F., et al., 2009. Harmonized world soil database. Wageningen: ISRIC. Available from: http://www.fao.org/land-water/en/.
  • Palutikof, J., et al., 2002. Generating rainfall and temperature scenarios at multiple sites: examples from the Mediterranean. Journal of Climate, 15 (24), 3529–3548.
  • Qian, B., Corte-Real, J., and Xu, H., 2002. Multisite stochastic weather models for impact studies. International Journal of Climatology, 22 (11), 1377–1397.
  • Rajesh, M., Kashyap, D., and Hari Prasad, K., 2010. Estimation of unconfined aquifer parameters by genetic algorithms. Hydrological Sciences Journal–Journal Des Sciences Hydrologiques, 55 (3), 403–413.
  • Rebonato, R. and Jäckel, P., 1999. The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. Journal of Risk, 2, 17–27.
  • Richardson, C.W., 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research, 17 (1), 182–190.
  • Richardson, C.W. and Wright, D.A., 1984. WGEN: a model for generating daily weather variables. United States Department of Agriculture, Agriculture Research Service, ARS-8, August 1984.
  • Rouhani, H., et al., 2007. Parameter estimation in semi-distributed hydrological catchment modelling using a multi-criteria objective function. Hydrological Processes, 21 (22), 2998–3008.
  • Semenov, M.A. and Barrow, E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35 (4), 397–414.
  • Srikanthan, R., 2005. Stochastic generation of daily rainfall data using a nested transition probability matrix model. In: 29th Hydrology and Water Resources Symposium: Water Capital, Rydges Lakeside, Canberra. Engineers Australia, 26.
  • Tanzeeba, S. and Gan, T.Y., 2012. Potential impact of climate change on the water availability of South Saskatchewan River Basin. Climatic Change, 112 (2), 355–386.
  • Tripathi, M., et al., 2004. Hydrological modelling of a small watershed using generated rainfall in the soil and water assessment tool model. Hydrological Processes, 18 (10), 1811–1821.
  • Wang, X. and Melesse, A., 2005. Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Transactions of the ASAE, 48 (4), 1359–1376.
  • Watson, B., et al., 2005. Hydrologic response of SWAT to single site and multi-site daily rainfall generation models. In: Proceedings of MODSIM05 international congress on modelling and simulation, Melbourne, Australia, 2981–2987.
  • Whitley, D., 1994. A genetic algorithm tutorial. Statistics and Computing, 4 (2), 65–85.
  • Wilks, D., 1998. Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210 (1), 178–191.
  • Wilks, D.S., 1999. Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agricultural and Forest Meteorology, 96 (1), 85–101.
  • Wilks, D.S. and Wilby, R.L., 1999. The weather generation game: a review of stochastic weather models. Progress in Physical Geography, 23 (3), 329–357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.