1,296
Views
41
CrossRef citations to date
0
Altmetric
Articles

Enhancing streamflow forecasting using the augmenting ensemble procedure coupled machine learning models: case study of Aswan High Dam

, ORCID Icon, & ORCID Icon
Pages 1629-1646 | Received 16 Jan 2019, Accepted 16 Jul 2019, Published online: 23 Sep 2019

References

  • Abudu, S., et al., 2010. Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China. Water Science and Engineering, 3 (3), 269–281.
  • Bhattacharya, B. and Solomatine, D.P., 2005. Neural networks and M5 model trees in modelling water level–discharge relationship. Neurocomputing, 63, 381–396. doi:10.1016/j.neucom.2004.04.016
  • Can, I., Tosunoğlu, F., and Kahya, E., 2012. Daily streamflow modelling using ARMA and ANN models. Water Environment Journal, 26, 567–576. doi:10.1111/j.1747-6593.2012.00337
  • Chu, H., Wei, J., and Qiu, J., 2018. Monthly streamflow forecasting using EEMD-Lasso-DBN method based on multi-scale predictors selection. Water, 10 (10), 1486. doi:10.3390/w10101486
  • Clifford, N.J., et al., 2009. Numerical modeling of river flow for ecohydraulic applications: some experiences with velocity characterization in field and simulated data. Journal of Hydraulic Engineering, 136 (12), 1033–1041. doi:10.1061/(ASCE)HY.1943-7900.0000057
  • Cohen, P., West, S.G., and Aiken, L.S., 2014. Applied multiple regression/correlation analysis for the behavioral sciences. New York: Psychology Press.
  • Dobriyal, P., et al., 2017. A review of methods for monitoring streamflow for sustainable water resource management. Applied Water Science, 7 (6), 2617–2628. doi:10.1007/s13201-016-0488-y
  • Fox, J., 1991. Regression diagnostics: an introduction. In: D. S. Foster, ed. Sage University paper series on quantitative applications in the social sciences. Newbury Park, CA: Sage, 07–079.
  • Friedman, J.H., 1991. Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–67. doi:10.1214/aos/1176347963
  • Friedman, J.H. and Roosen, C.B., 1995. An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4 (3), 197–217. doi:10.1177/096228029500400303
  • George, E.I., 2000. The variable selection problem. Journal of the American Statistical Association, 95 (452), 1304–1308. doi:10.1080/01621459.2000.10474336
  • Giupponi, C., et al., 2015. Integrated risk assessment of water-related disasters. In: J. F. Shroder, P. Paron and G. Di Baldassarre, eds. Hydro-meteorological hazards, risks and disasters. Netherlands: Elsevier, 163–200.
  • Graupe, D., 2013. Principles of artificial neural networks. Vol. 7, Singapore: World Scientific.
  • Hastie, T., Tibshirani, R., and Friedman, J., 2009. The elements of statistical learning. Springer series in statistics. New York, NY: Springer. http://link.springer.com/10.1007/978-0-387-84858-7.
  • Honorato, A.G.D.S.M., Silva, G.B.L.D., and Guimarães Santos, C.A., 2018. Monthly streamflow forecasting using neuro-wavelet techniques and input analysis. Hydrological Sciences Journal, 63 (15–16), 2060–2075. doi:10.1080/02626667.2018.1552788
  • Humphrey, G.B., et al., 2016. A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology, 540, 623–640. doi:10.1016/j.jhydrol.2016.06.026
  • Hurst, H.E., Black, R.P., and Simaika, Y.M., 1966. The major Nile projects. In: Cairo University, ed. The Nile Basin. Vol. X. Cairo, Egypt: Government Press.
  • Kisi, O., 2007. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering, 12 (5), 532–539. doi:10.1061/(ASCE)1084-0699(2007)12:5(532)
  • Kisi, O., 2009a. Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting. Hydrological Processes, 23 (25), 3583–3597. doi:10.1002/hyp.7461
  • Kisi, O., 2009b. Neural networks and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrologic Engineering, 14 (8), 773–782. doi:10.1061/(ASCE)HE.1943-5584.0000053
  • Kisi, O., 2015. Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resources Management, 29 (14), 5109–5127. doi:10.1007/s11269-015-1107-7
  • Kobayashi, M. and Sakata, S., 1990. Mallows’ Cp criterion and unbiasedness of model selection. Journal of Econometrics, 45 (3), 385–395. doi:10.1016/0304-4076(90)90006-F
  • Mallows, C.L., 1973. Some comments on Cp. Technometrics, 15 (4), 661–675.
  • Milborrow, S., 2018. Notes on the earth package. [online] http://www.milbo.org/doc/earth-notes.pdf [Accessed 8 August 2018]
  • Mohammadi, K., Eslami, H.R., and Kahawita, R., 2006. Parameter estimation of an ARMA model for river flow forecasting using goal programming. Journal of Hydrology, 331 (1–2), 293–299. doi:10.1016/j.jhydrol.2006.05.017
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers, 50, 885–900.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nwaogazie, I.L., 1987. Comparative analysis of some explicit-implicit streamflow models. Advances in Water Resources, 10 (2), 69–77. doi:10.1016/0309-1708(87)90011-X
  • Quinlan, J.R., 1992, November. Learning with continuous classes. In: 5th Australian Joint Conference on Artificial IntelligenceIncorporating behaviour into animal movement modeling: a constrained agent based model for estimating visit probabilities in space-time prisms Hobart, Australia, vol. 92, 343–348.
  • Regonda, S.K., Rajagopalan, B., and Clark, M., 2006. A new method to produce categorical streamflow forecasts. Water Resources Research, 42 (9), W09501. doi:10.1029/2006WR004984
  • Rezaie-Balf, M. and Kisi, O., 2018. New formulation for forecasting streamflow: evolutionary polynomial regression vs. extreme learning machine. Hydrology Research, 49 (3), 939–953. doi:10.2166/nh.2017.283
  • Rezaie-balf, M., et al., 2017. Wavelet coupled MARS and M5 model tree approaches for groundwater level forecasting. Journal of Hydrology, 553, 356–373. doi:10.1016/j.jhydrol.2017.08.006
  • Rosenberg, E.A., Wood, A.W., and Steinemann, A.C., 2011. Statistical applications of physically based hydrologic models to seasonal streamflow forecasts. Water Resources Research, 47, W00H14. doi:10.1029/2010WR010101
  • Shabri, A. and Suhartono, 2012. Streamflow forecasting using least-squares support vector machines. Hydrological Sciences Journal, 57 (7), 1275–1293. doi:10.1080/02626667.2012.714468
  • Shiri, J. and Kisi, O., 2010. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology, 394 (3–4), 486–493. doi:10.1016/j.jhydrol.2010.10.008
  • Solomatine, D.P. and Xue, Y., 2004. M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering, 9 (6), 491–501. doi:10.1061/(ASCE)1084-0699(2004)9:6(491)
  • Talebi, A., et al., 2017. Estimation of suspended sediment load using regression trees and model trees approaches (Case study: hyderabad drainage basin in Iran). ISH Journal of Hydraulic Engineering, 23 (2), 212–219. doi:10.1080/09715010.2016.1264894
  • Torres, M.E., et al., 2011, May. A complete ensemble empirical mode decomposition with adaptive noise. In Acoustics, speech and signal processing (ICASSP), 2011 IEEE international Conference, Prague, Czech Republic. IEEE, 4144–4147.
  • Vafakhah, M., 2012. Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term streamflow forecasting. Canadian Journal of Civil Engineering, 39 (4), 402–414. doi:10.1139/l2012-011
  • Vieux, B.E., Cui, Z., and Gaur, A., 2004. Evaluation of a physics-based distributed hydrologic model for flood forecasting. Journal of Hydrology, 298 (1–4), 155–177. doi:10.1016/j.jhydrol.2004.03.035
  • Wang, Y. and Witten, I.H., 1996. Induction of model trees for predicting continuous classes. Waikato, New Zealand: The University of Waikato, Computer Science Working Paper 96/23.
  • Wang, Z.Y., Qiu, J., and Li, F.F., 2018. Hybrid Models Combining EMD/EEMD and ARIMA for Long-Term Streamflow Forecasting. Water, 10 (7), 853. doi:10.3390/w10070853
  • Willmott, C.J., 1981. On the validation of models. Physical Geography, 2 (2), 184–194. doi:10.1080/02723646.1981.10642213
  • Willmott, C.J., Robeson, S.M., and Matsuura, K., 2012. A refined index of model performance. International Journal of Climatology, 32 (13), 2088–2094. doi:10.1002/joc.v32.13
  • Willmott, H.C., 1984. Images and ideals of managerial work: a critical examination of conceptual and empirical accounts. Journal of Management Studies, 21 (3), 349–368. doi:10.1111/joms.1984.21.issue-3
  • Wu, W., Dandy, G.C., and Maier, H.R., 2014. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environmental Modelling & Software, 54, 108–127. doi:10.1016/j.envsoft.2013.12.016
  • Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1 (01), 1–41. doi:10.1142/S1793536909000047
  • Yaseen, Z.M., et al., 2015. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530, 829–844. doi:10.1016/j.jhydrol.2015.10.038
  • Zhang, W. and Goh, A.T., 2016. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geoscience Frontiers, 7 (1), 45–52. doi:10.1016/j.gsf.2014.10.003
  • Zhang, Z., Zhang, Q., and Singh, V.P., 2018. Univariate streamflow forecasting using commonly used data-driven models: literature review and case study. Hydrological Sciences Journal, 63 (7), 1091–1111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.