1,147
Views
1
CrossRef citations to date
0
Altmetric
Articles

Groundwater contamination risks from conservative point source pollutants in a future climate

, &
Pages 1659-1671 | Received 27 Jun 2018, Accepted 03 Jul 2019, Published online: 30 Sep 2019

References

  • Allen, R., et al., 1998. Crop evapotranspiration, guidelines for computing crop water requirements. FAO irrigation and drainage paper No. 56. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Aller, L., et al., 1987. DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrogeologic settings. Ada, OK: US Environmental Protection Agency, EPA/60012-87/035.
  • Anderson, M.P., 1984. Movement of contaminants in groundwater: groundwater transport advection and dispersion. In: National Research Council, ed. Groundwater contamination. Studies in geophysics. Washington, DC: National Academy, 37–45.
  • Arheimer, B., et al., 2005. Climate change impact on water quality: model results from southern Sweden. AMBIO, 34, 559–566.
  • Belmans, C., Wesseling, J.G., and Feddes, R.A., 1983. Simulation model of the water balance of a cropped soil: SWATER. Journal of Hydrology, 63, 271–286. doi:10.1016/0022-1694(83)90045-8
  • Bicki, T.J. and Guo, L., 1991. Tillage and simulated rainfall intensity effect on bromide movement in an argiudoll. Soil Science Society of America Journal, 55, 794–799. doi:10.2136/sssaj1991.03615995005500030027x
  • Boogaard, H., et al., 1998. WOFOST 7.1: user’s guide for the WOFOST 7.1 crop growth simulation model and WOFOST control center. Wageningen, The Netherlands: DLO Winand Staring Centre, Technical Report.
  • Corwin, D.L., 1996. GIS applications of deterministic solute transport models for regional-scale assessment of non-point source pollutants in the vadose zone. In: D.L. Corwin and K. Loague, eds. Applications of GIS to the modeling of non-point source pollutants in the vadose zone. Madison, WI: Soil Science Society of America, SSSA Special Publication No. 48, 69–100.
  • Cote, C.M., et al., 2001. Measurement of water and solute movement in large undisturbed soil cores: analysis of Macknade and Bundaderg data. CSIRO Land and Water, Technical Report 07/2001.
  • Dash, J.C., et al., 2015. Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model. Paddy Water Environment, 13, 281–290. doi:10.1007/s10333-014-0439-x
  • FAO, 2006. Guidelines for soil description. 4th ed. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • FAO (Food and Agriculture Organization of the United Nations), 2012. FAO - water, natural resources and environment department [Online]. Available from: http://www.fao.org/land-water/databases-and-software/cropwat/en/ [Accessed 25 September 2019].
  • Feddes, R.A., Kowalik, P.J., and Zaradny, H., 1978. Simulation of field water use and crop yield. New York, NY: John Wiley & Sons.
  • Gu, C. and Riley, W.J., 2010. Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling - a modeling analysis. Journal of Contaminant Hydrology, 112, 141–154. doi:10.1016/j.jconhyd.2009.12.003
  • Harman, C.J., et al., 2011. Climate, soil, and vegetation controls on the temporal variabilityof vadose zone transport. Water Resources Research, 47, W00J13. doi:10.1029/2010WR010194
  • Hay, L.E., Wilby, R.L., and Leavesley, G.H., 2000. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. JAWRA Journal of the American Water Resources Association, 36, 387–397. doi:10.1111/jawr.2000.36.issue-2
  • Hazeleger, W., et al., 2010. EC-Earth. Bulletin of the American Meteorological Society, 91, 1357–1364. doi:10.1175/2010BAMS2877.1
  • IPCC (Intergovernmental Panel on Climate Change), 2013. Climate change 2013: the physical science basis. Cambridge, UK and New York, NY: Cambridge University Press, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
  • Jarvis, N.J., 2007. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58, 523–546. doi:10.1111/ejs.2007.58.issue-3
  • Kay, A.L. and Davies, H.N., 2008. Calculating potential evaporation from climate model data: a source of uncertainty for hydrological climate change impacts. Journal of Hydrology, 358, 221–239. doi:10.1016/j.jhydrol.2008.06.005
  • Kjellström, E., et al., 2016. Production and use of regional climate model projections – a Swedish perspective on building climate services. Climate Services, 2, 15–29. doi:10.1016/j.cliser.2016.06.004
  • Knapp, A.K., et al., 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58, 811–821. doi:10.1641/B580908
  • Koestel, J. and Jorda, H., 2014. What determines the strength of preferential transport in Undisturbed soil under steady-state flow. Geoderma, 217–218, 144–160. doi:10.1016/j.geoderma.2013.11.009
  • Kool, J.B. and Parker, J.C., 1987. Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resources Research, 23, 105–114. doi:10.1029/WR023i001p00105
  • Maraun, D., et al., 2015. VALUE: a framework to validate downscaling approaches for climate change studies. Earth’s Future, 3, 1–14. doi:10.1002/2014EF000259
  • McGrath, G.S., Hinz, C., and Sivapalan, M., 2010. Assessing the impact of regional rainfall variability on rapid pesticide leaching potential. Journal of Contaminant Hydrology, 113, 56–65. doi:10.1016/j.jconhyd.2009.12.007
  • Moss, R.H., Nakicenovic, N., and O’Neill, B.C., 2008. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Geneva, Switzerland: IPCC. ISBN 978-92-9169-125-8.
  • Olsson, J., et al., 2009. Applying climate model precipitation scenarios for urban hydrological assessment: a case study in Kalmar City, Sweden. Atmospheric Research, 92, 364–375. doi:10.1016/j.atmosres.2009.01.015
  • Olsson, J., et al., 2012. Downscaling of short-term precipitation from regional climate models for sustainable urban planning. Sustainability, 4, 866–887. doi:10.3390/su4050866
  • Olsson, J., et al., 2016. Hydrological climate change impact assessment at small and large scales: key messages from recent progress in Sweden. Climate, 4 (3), 39. doi:10.3390/cli4030039
  • Persson, M. and Berndtsson, R., 1999. Water application frequency effects on steady state solute transport parameters. Journal of Hydrology, 225, 140–154. doi:10.1016/S0022-1694(99)00154-7
  • Persson, M. and Saifadeen, A., 2016. Effects of hysteresis, rainfall dynamics, and temporal resolution of rainfall input data in solute transport modelling in uncropped soil. Hydrological Sciences Journal, 61 (5), 982–990.
  • Ritchie, J.T., 1972. A model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8 (5), 1204–1213. doi:10.1029/WR008i005p01204
  • Schaap, M., Leij, F., and van Genuchten, M., 2001. ROSETTA: a computer program for estimating soil hydraulic properties with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176. doi:10.1016/S0022-1694(01)00466-8
  • Selim, T., Persson, M., and Olsson, J., 2017. Impact of spatial rainfall resolution on point source solute transport modelling. Hydrological Sciences Journal, 62 (16), 2587–2596. doi:10.1080/02626667.2017.1403029
  • Sharma, M.L. and Taniguchi, M., 1991. Movement of a non-reactive solute tracer during steady and intermittent leaching. Journal of Hydrology, 128, 323–334. doi:10.1016/0022-1694(91)90145-8
  • Šimůnek, J., et al., 2008. The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.0: HYDRUS Software Series 3. University of California Riverside, Riverside, CA: Department of Environmental Science.
  • Šimůnek, J., van Genuchten, M.T., and Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15 (7), 25. doi:10.2136/vzj2016.04.0033
  • Sjökvist, E., et al., 2015. Klimatscenarier för Sverige. Bearbetning av RCP-scenarier för meteorologiska och hydrologiska effektstudier. SMHI, Norrköping, Sweden: Klimatologi nr, 15.
  • Stuart, M., et al., 2012. Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment, 416, 1–21. doi:10.1016/j.scitotenv.2011.11.072
  • Sutanto, S.J., et al., 2012. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16, 2605–2616. doi:10.5194/hess-16-2605-2012
  • Tafteh, A. and Sepaskhah, A.R., 2012. Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields. Agricultural Water Management, 113, 19–29. doi:10.1016/j.agwat.2012.06.011
  • Thomey, M.L., et al., 2012. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan desert grassland. Global Change Biology, 17, 1505–1515. doi:10.1111/gcb.2011.17.issue-4
  • Tiktak, A., et al., 2004. Assessment of the pesticide leaching risk at the pan-European level: the EuroPEARL approach. Journal of Hydrology, 289, 222–238. doi:10.1016/j.jhydrol.2003.11.030
  • Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Science Socitey of America Journal, 44 (5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x
  • Veijalainen, N., et al., 2010. National scale assessment of climate change impacts on flooding in Finland. Journal of Hydrology, 391, 333–350. doi:10.1016/j.jhydrol.2010.07.035
  • Voldoire, A., et al., 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40, 2091–2121. doi:10.1007/s00382-011-1259-y
  • Wang, X., et al., 2015. An assessment of irrigation practices: sprinkler irrigation of winter wheat in the North China plain. Agricultural Water Management, 159, 197–208. doi:10.1016/j.agwat.2015.06.011
  • Willems, P., et al., 2012. Impacts of climate change on rainfall extremes and urban drainage systems. London, UK: IWA Publishing.
  • Yang, W., et al., 2010. Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impact studies. Hydrology Research, 41, 211–229. doi:10.2166/nh.2010.004
  • Zhou, J., et al., 2012. Numerical modeling of wheat irrigation using coupled HYDRUS and WOFOST models. Soil & Water Management & Conservation, 76 (2), 648–662.