515
Views
8
CrossRef citations to date
0
Altmetric
Articles

Nonlinear response of runoff to atmospheric freezing level height variation based on hybrid prediction models

, ORCID Icon, , &
Pages 1556-1572 | Received 18 Jul 2018, Accepted 06 Jul 2019, Published online: 27 Sep 2019

References

  • Abrahart, R.J., et al., 2012. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Progress in Physical Geography, 36 (4), 480–513. doi:10.1177/0309133312444943
  • Ahani, A., Shourian, M., and Rad, P.R., 2017. Performance assessment of the linear, nonlinear and nonparametric data driven models in river flow forecasting. Water Resources Management, 32 (1), 1–17.
  • Allan, R.J., 2000. ENSO and climatic variability in the past 150 years. El Niño and the Southern Oscillation: multi-scale variability, global and regional impacts. New York: Cambridge University Press.
  • Anderson, D.R., Burnham, K.P., and Thompson, W.L., 2000. Null hypothesis testing: problems, prevalence, and an alternative. The Journal of Wildlife Management, 64 (4), 912–923. doi:10.2307/3803199
  • Ayenu-Prah, A.Y. and Attohokine, N.O., 2009. Comparative study of Hilbert-Huang transform, fourier transform and wavelet transform in pavement profile analysis. Vehicle System Dynamics, 47 (4), 437–456. doi:10.1080/00423110802167466
  • Bradley, R.S., et al., 2012. Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophysical Research Letters, 36 (17), 367–389.
  • Chen, R.S., Kang, E.S., and Zhang, J.S., 2001. Application of wavelet transform on annual runoff, yearly average air temperature and annual precipitation periodic variations in Hexi region. Advance in Earth Sciences, 16 (3), 339–345. (in Chinese).
  • Chen, X.F., 1995. The anomaly change of subtropical high and its formation cause in West Pacific. Meteorological Monthly, 21 (12), 3–7. (in Chinese).
  • Chen, Y.N., et al., 2015. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environmental Research, 139, 11–19. doi:10.1016/j.envres.2014.12.029
  • Chen, Z.S., Chen, Y.N., and Li, W.H., 2012. Response of runoff to change of atmospheric 0℃ level height in summer in arid region of Northwest China. Science China Earth Sciences, 55 (9), 1533–1544. doi:10.1007/s11430-012-4472-6
  • Daliakopoulos, I.N. and Tsanis, I.K., 2016. Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow. Hydrological Sciences Journal, 61 (15), 2763–2774. doi:10.1080/02626667.2016.1154151
  • Ding, H.W., et al., 2001. Trend prediction and characteristics of runoff variation into the Danghe reservoir. Journal of Desert Research, 21 (z1), 38–42. (in Chinese).
  • Duan, A.M. and Wu, G.X., 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: observations. Journal of Climate, 21, 3149–3164. doi:10.1175/2007JCLI1912.1
  • Engelhardt, M., Schuler, T.V., and Andreassen, L.M., 2014. Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway. Hydrology and Earth System Sciences, 18 (18), 511–523. doi:10.5194/hess-18-511-2014
  • Finger, D., et al., 2011. The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model. Water Resources Research, 47, W07519. doi:10.1029/2010wr009824
  • Garvelmann, J., Pohl, S., and Weiler, M., 2015. Spatio-temporal controls of snowmelt and runoff generation during rain-on-snow events in a mid-latitude mountain catchment. Hydrological Processes, 29 (17), 3649–3664. doi:10.1002/hyp.v29.17
  • He, L., et al., 2015. Multi-scale prediction of regional sea level change based on EEMD and BP neural network. Quaternary Sciences, 35 (2), 374–382. (in Chinese).
  • He, M.X., et al., 2011. Corruption of parameter behavior and regionalization by model and forcing data errors: a Bayesian example using the SNOW17 model. Water Resources Research, 47 (7), W07546. doi:10.1029/2010WR009753
  • Hsu, K., Gupta, H.V., and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31 (31), 2517–2530. doi:10.1029/95WR01955
  • Hu, X.Y., et al., 2017. Variation characteristics and influence factors of potential evapotranspiration in Hotan region in recent 54 years. Research of Soil and Water Conservation, 24 (1), 145–150.
  • Huang, N.E. and Wu, Z.H., 2008. A review on Hilbert–huang transform: method and its applications to geophysical studies. Reviews of Geophysics, 46 (2), 1–23. doi:10.1029/2007RG000228
  • Huang, S.Z., et al., 2014. Monthly streamflow prediction using modified EMD-based support vector machine. Journal of Hydrology, 511 (7), 764–775. doi:10.1016/j.jhydrol.2014.01.062
  • Huang, Y.X., et al., 2009. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Journal of Hydrology, 373 (1–2), 103–111. doi:10.1016/j.jhydrol.2009.04.015
  • Humphrey, G.B., et al., 2016. A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology, 540, 623–640. doi:10.1016/j.jhydrol.2016.06.026
  • Huss, M., et al., 2010. Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrological Processes, 22 (19), 3888–3902. doi:10.1002/hyp.7055
  • Ji, J.J. and Huang, M., 2006. The estimation of the surface energy fluxes over Tibetan Plateau. Advances in Earth Science, 21 (12), 1268–1272.
  • Kan, G.Y., et al., 2015. Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model. Stochastic Environmental Research & Risk Assessment, 29 (5), 1345–1370. doi:10.1007/s00477-015-1040-6
  • Kang, E.S., Cheng, G.D., and Dong, Z.C., 2002. Glacier-snow water resources and mountain runoff in the arid area of Northwest China. Beijing: Science Press.
  • Kashani, M.H., et al., 2016. Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. Journal of Hydrology, 540, 340–354. doi:10.1016/j.jhydrol.2016.06.028
  • Kasiviswanathan, K.S., Sudheer, K.P., and He, J., 2018. Probabilistic and ensemble simulation approaches for input uncertainty quantification of artificial neural network hydrologic models. Hydrological Sciences Journal, 63 (1), 101–113. doi:10.1080/02626667.2017.1393686
  • Kermani, B.G., Schiffman, S.S., and Nagle, H.G., 2005. Performance of the Levenberg–marquardt neural network training method in electronic nose applications. Sensors & Actuators B Chemical, 110 (1), 13–22. doi:10.1016/j.snb.2005.01.008
  • Kisi, O., 2010. Wavelet regression model for short-term streamflow forecasting. Journal of Hydrology, 389 (3–4), 344–353. doi:10.1016/j.jhydrol.2010.06.013
  • Koutsoyiannis, D. and Montanari, A., 2015. Negligent killing of scientific concepts: the stationarity case. International Association of Scientific Hydrology Bulletin, 60 (7– 8), 1174– 1183. doi:10.1080/02626667.2014.959959
  • Laio, F. and Tamea, S., 2007. Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrology & Earth System Sciences, 11 (4), 1267–1277. doi:10.5194/hess-11-1267-2007
  • Li, B.F., et al., 2018. Why does the runoff in Hotan River show a slight decreased trend in northwestern China? Atmospheric Science Letters, 19, 1. doi:10.1002/asl.800
  • Luo, Y., et al., 2013. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. Journal of Hydrology, 477 (477), 72–85. doi:10.1016/j.jhydrol.2012.11.005
  • Maier, H.R. and Dandy, G.C., 1998. The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environmental Modelling& Software, 13 (2), 193–209. doi:10.1016/S1364-8152(98)00020-6
  • Mallat, S.G., 1989. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Transactions Pattern Analysis and Machine Intelligence, 11 (7), 674–693. doi:10.1109/34.192463
  • Mason, S.J. and Stephenson, D.B., 2008. How do we know whether seasonal climate forecasts are any good? Berlin: Springer.
  • Modarres, R., 2008. Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrology & Earth System Sciences, 13 (3), 411–421. doi:10.5194/hess-13-411-2009
  • Moghadassi, A.R., et al., 2009. A new approach for estimation of PVT properties of pure gases based on artificial neural network model. Brazilian Journal of Chemical Engineering, 26 (1), 199–206. doi:10.1590/S0104-66322009000100019
  • Montanari, A. and Koutsoyiannis, D., 2012. A blueprint for process-based modeling of uncertain hydrological systems. Water Resources Research, 48 (9), 9555. doi:10.1029/2011WR011412
  • Montanari, A. and Koutsoyiannis, D., 2015. Modeling and mitigating natural hazards: stationarity is immortal! Water Resources Research, 50 (12), 9748–9756. doi:10.1002/2014WR016092
  • Nayak, P.C., et al., 2013. Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology, 493 (13), 57–67. doi:10.1016/j.jhydrol.2013.04.016
  • Nayak, P.C., Sudheer, K.P., and Jain, S.K., 2007. Rainfall‐runoff modeling through hybrid intelligent system. Water Resources Research, 43 (W07415), 931–936. doi:10.1029/2006WR004930
  • Ning, L., et al., 2016. Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis. Journal of Arid Land, 8 (4), 506–520. doi:10.1007/s40333-016-0126-4
  • Nourani, V., et al., 2014. Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review. Journal of Hydrology, 514, 358–377. doi:10.1016/j.jhydrol.2014.03.057
  • Nourani, V., Kisi, Ö., and Komasi, M., 2011. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. Journal of Hydrology, 402 (1–2), 41–59. doi:10.1016/j.jhydrol.2011.03.002
  • Oreskes, N., Shrader-Frechette, K., and Belitz, K., 1994. Verification, validation, and confirmation of numerical models in the Earth sciences. Science, 263 (5147), 641–646. doi:10.1126/science.263.5147.641
  • Peng, T., et al., 2017. Streamflow forecasting using empirical wavelet transform and artificial neural networks. Water, 9 (6), 406. doi:10.3390/w9060406
  • Peretto, L., Sasdelli, R., and Tinarelli, R., 2005. On uncertainty in wavelet-based signal analysis. IEEE Transactions on Instrumentation and Measurement, 54 (4), 1593–1599. doi:10.1109/TIM.2005.851210
  • Qin, Y.H., et al., 2018. Spatio-temporal variations of nonlinear trends of precipitation over an arid region of northwest China according to the extreme-point symmetric mode decomposition method. International Journal of Climatology, 38 (5), 2239–2249. doi:10.1002/joc.5330
  • Ragettli, S., et al., 2015. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111. doi:10.1016/j.advwatres.2015.01.013
  • Ramsey, J.B., 1999. Regression over timescale decompositions: a sampling analysis of distributional properties. Economic Systems Research, 11 (2), 163–184. doi:10.1080/09535319900000012
  • Renard, B., et al., 2010. Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resources Research, 46 (5), 1187–1191. doi:10.1029/2009WR008328
  • Sang, Y.F., et al., 2009. Entropy-Based wavelet de-noising method for time series analysis. Entropy, 11 (4), 1123–1148. doi:10.3390/e11041123
  • Sang, Y.F., et al., 2018. A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data. Hydrology and Earth System Sciences, 22 (1), 757–766. doi:10.5194/hess-22-757-2018
  • Schafer, B.M., Pfrommer, C., and Zaroubi, S., 2005. Redshift estimation of clusters by wavelet decomposition of their Sunyaev-Zel’dovich morphology. Monthly Notices of the Royal Astronomical Society, 362 (4), 1418–1434. doi:10.1111/j.1365-2966.2005.09419.x
  • Serinaldi, F. and Kilsby, C.G., 2015. Stationarity is undead: uncertainty dominates the distribution of extremes. Advances in Water Resources, 77, 17–36. doi:10.1016/j.advwatres.2014.12.013
  • Serinaldi, F., Kilsby, C.G., and Lombardo, F., 2018. Untenable nonstationarity: an assessment of the fitness for purpose of trend tests in hydrology. Advances in Water Resources, 111, 132–155. doi:10.1016/j.advwatres.2017.10.015
  • Shi, Y.F., et al., 2007. Recent and future climate change in Northwest China. Climatic Change, 80 (3–4), 379–393. doi:10.1007/s10584-006-9121-7
  • Srivastav, R.K., Sudheer, K.P., and Chaubey, I., 2007. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resources Research, 43 (10), 145–151. doi:10.1029/2006WR005352
  • Sudheer, K.P., et al., 2010. Artificial neural network approach for mapping contrasting tillage practices. Remote Sensing, 2 (2), 579–590. doi:10.3390/rs2020579
  • Swee, E.G.T. and Elangovan, S., 1999. Applications of symlets for denoising and load forecasting. In: IEEE signal processing workshop on higher-order statistics. Caesarea, 165–169.
  • Taguas, E.V., et al., 2015. Modelling the rainfall-runoff relationships in a large olive orchard catchment in Southern Spain. Water Resources Management, 29 (7), 2361–2375. doi:10.1007/s11269-015-0946-6
  • Tan, Q.F., et al., 2018. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. Journal of Hydrology, 567, 767–780. doi:10.1016/j.jhydrol.2018.01.015
  • Tanty, R. and Desmukh, T.S., 2015. Application of artificial neural network in hydrology – a review. International Journal of Engineering Research & Technology, 4 (6), 184–188.
  • Torrence, C. and Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79 (79), 61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  • Tse, N.C. and Lai, L., 2007. Wavelet-based algorithm for signal analysis. EURASIP Journal on Advances in Signal Processing, 2007 (1). doi:10.1155/2007/38916
  • Van Beusekom, A.E. and Viger, R.J., 2016. A glacier runoff extension to the precipitation runoff modeling system. Journal of Geophysical Research: Earth Surface, 121 (11), 2001–2021.
  • Wang, C., et al., 2017. A hybrid model to assess the impact of climate variability on streamflow for an ungauged mountainous basin. Climate Dynamics, 50 (7–8), 2829–2844. doi:10.1007/s00382-017-3775-x
  • Wang, J., Li, H.Y., and Hao, X.H., 2010. Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years. Hydrology and Earth System Sciences, 14 (10), 1979–1987. doi:10.5194/hess-14-1979-2010
  • Wang, J.L. and Li, Z.J., 2013. Extreme-point symmetric mode decomposition method for data analysis. Advances in Adaptive Data Analysis, 5 (3), 1137. doi:10.1142/S1793536913500155
  • Wang, J.L. and Li, Z.J., 2014. The ESMD method for climate data analysis. Climate Change Research Letters, 3 (1), 1–5. (in Chinese). doi:10.12677/CCRL.2014.31001
  • Wang, X., et al., 2008b. Sensitivity analysis of glacier systems to climate warming in China. Journal of Geographical Sciences, 18, 190–200. doi:10.1007/s11442-008-0190-6
  • Wang, X.J., Feng, G.M., and Geng, Q.Z., 2014. Application research on combined models based on wavelet analysis in prediction of daily runoff. Journal of Natural Resources, 29 (5), 885–893. (in Chinese).
  • Wang, X.L., et al., 2015. Assessing the effects of precipitation and temperature on hydrological processes in a glacier-dominated catchment. Hydrological Processes, 29 (23), 4830–4845. doi:10.1002/hyp.10538
  • Wang, X.Y., et al., 2019. Understanding the discharge regime of a glacierized alpine catchment in the Tianshan Mountains using an improved HBV-D hydrological model. Global and Planetary Change, 172 (2019), 211–222. doi:10.1016/j.gloplacha.2018.09.017
  • Wang, Y.L., et al., 2008a. Response of summer average discharge in the Hotan River to changes in regional 0℃ level height. Advances in Climate Change Research, 4 (3), 151–155. (in Chinese).
  • Weigend, A.S. and Gershenfeld, N.A., 1994. Time series prediction: forecasting the future and understanding the past. Science, 265, 1745–1746.
  • Wu, C.L., Chau, K.W., and Li, Y.S., 2009. Methods to improve neural network performance in daily flows prediction. Journal of Hydrology, 372 (1–4), 80–93. doi:10.1016/j.jhydrol.2009.03.038
  • Wu, Z.H., et al., 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America, 104 (38), 14889–14894. doi:10.1073/pnas.0701248104
  • Wu, Z.H. and Huang, N.E., 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Royal Society of London Proceedings Series A, 460 (2046), 1597–1611. doi:10.1098/rspa.2003.1221
  • Wu, Z.H. and Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1 (1), 1–41. doi:10.1142/S1793536909000047
  • Xu, G.C. and Dong, A.X., 1982. The quasi-three year period of precipitation in the west of China. Plateau Meteorology, 1 (2), 11–17. (in Chinese).
  • Xu, J.H., et al., 2011. An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stochastic Environmental Research & Risk Assessment, 25 (2), 223–233. doi:10.1007/s00477-010-0433-9
  • Xu, J.H., et al., 2014. Integrating wavelet analysis and BPANN to simulate the annual runoff with regional climate change: a case study of Yarkand river, northwest China. Water Resources Management, 28 (9), 2523–2537. doi:10.1007/s11269-01s4-0625-z
  • Xu, J.H., et al., 2016. A hybrid model to simulate the annual runoff of the Kaidu River in northwest China. Hydrology & Earth System Sciences, 20, 1447–1457. doi:10.5194/hess-20-1447-2016
  • Yadav, A.K., et al., 2015. De-noising of ultrasound image using discrete wavelet transform by symlet wavelet and filters. In: International conference on Advances in Computing, Communications and Informatics, 10–13 August 2015, Kochi, India, 1204–1208.
  • Yang, K., Guo, X.F., and Wu, B.Y., 2011. Recent trends in surface sensible heat flux on the Tibetan Plateau. Science in China Series D: Earth Sciences, 54 (1), 19–28. doi:10.1007/s11430-010-4036-6
  • Yang, Z.F. and Li, C.H., 2004. Abrupt and periodic changes of the annual natural runoff in the Subregions of the Yellow River. Journal of Mountain Science, 22 (2), 140–146. (in Chinese).
  • Yang, Z.N., 1991. Glacier water resources in China. Lanzhou: Gansu Science and Technology Press. (in Chinese).
  • Zhang, G.X., et al., 2010. The response of annual runoff to the height change of the summertime 0°C level over Xinjiang. Journal of Geographical Sciences, 20, 833–847. doi:10.1007/s11442-010-0814-5
  • Zhang, Y.S. and Guo, Y., 2011. Variability of atmospheric freezing-level height and its impact on the cryosphere in China. Annals of Glaciology, 52 (58), 81–88. doi:10.3189/172756411797252095
  • Zhao, A.F., et al., 2013. Changes in 0°C isotherm height of Southwest China during 1960–2010. Acta Geographica Sinica, 68 (7), 994–1006. (in Chinese).
  • Zhao, X.H., et al., 2017. An EMD-based chaotic least squares support vector machine hybrid model for annual runoff forecasting. Water, 9 (3). doi:10.3390/w9030153
  • Zhao, X.H. and Chen, X., 2015. Auto regressive and ensemble empirical mode decomposition hybrid model for annual runoff forecasting. Water Resources Management, 29 (8), 2913–2926. doi:10.1007/s11269-015-0977-z
  • Zhou, Y.H., et al., 2000. The earth’s rotation movement and the atmosphere, ocean activities. Chinese Science Bulletin, 45 (24), 2588–2597. (in Chinese).
  • Zhu, S., et al., 2016. Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China. Environmental Earth Sciences, 75 (6), 531. doi:10.1007/s12665-016-5337-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.