623
Views
5
CrossRef citations to date
0
Altmetric
Articles

Studies on changes in extreme flood peaks resulting from land-use changes need to consider roughness variations

& ORCID Icon
Pages 2015-2024 | Received 14 Mar 2018, Accepted 22 Aug 2019, Published online: 15 Oct 2019

References

  • Baker, I., et al., 2003. Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5. Global Change Biology, 9 (9), 1262–1277. doi:10.1046/j.1365-2486.2003.00671.x
  • Baker, I.T., et al., 2017. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-B ins. Journal of Advances in Modeling Earth Systems, 9 (1), 691–711. doi:10.1002/2016MS000764
  • Barnes, H.H., 1967. Roughness characteristics of natural channels. Washington, DC: U.S. Government Printing Office.
  • Bathurst, J.C., et al., 2011. Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 2: model analysis. Journal of Hydrology, 400 (3–4), 292–304. doi:10.1016/j.jhydrol.2010.09.001
  • Blöschl, G., et al., 2017. Changing climate shifts timing of European floods. Science, 357 (6351), 588. doi:10.1126/science.aan2506
  • Bosshard, T., et al., 2013. Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resources Research, 49 (3), 1523–1536. doi:10.1029/2011WR011533
  • Brown, A.E., et al., 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310 (1), 28–61. doi:10.1016/j.jhydrol.2004.12.010
  • Chen, Y., et al., 2011. Liuxihe model and its modeling to river basin flood. Journal of Hydrologic Engineering, 16 (1), 33–50. doi:10.1061/(ASCE)HE.1943-5584.0000286
  • Crooks, S. and Davies, H., 2001. Assessment of land use change in the Thames catchment and its effect on the flood regime of the river. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26 (7), 583–591.
  • De Roo, A., et al., 2003. The influence of historic land use changes and future planned land use scenarios on floods in the Oder catchment. Physics and Chemistry of the Earth, Parts A/B/C, 28 (33), 1291–1300. doi:10.1016/j.pce.2003.09.005
  • Eisenbies, M.H., et al., 2007. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the appalachians—A review. Forest Ecology and Management, 242 (2–3), 77–98. doi:10.1016/j.foreco.2007.01.051
  • Engman, E.T., 1986. Roughness coefficients for routing surface runoff. Journal of Irrigation and Drainage Engineering, 112 (1), 39–53. doi:10.1061/(ASCE)0733-9437(1986)112:1(39)
  • FAO (Food and Agriculture Organization), 2003. Digital soil map of the world and derived soil properties, land and water digital media series [online]. Rome, Italy: Food and Agriculture Organization of the United Nations. Available from: http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
  • Fazio, J.R., 2012. How trees can retain stormwater runoff. Nebraska City: Arbor Day Foundation.
  • Gao, H., Cai, H., and Duan, Z., 2017. Understanding the impacts of catchment characteristics on the shape of the storage capacity curve and its influence on flood flows. Hydrology Research, 49 (1), 90–106. doi:10.2166/nh.2017.245
  • Hu, Z., et al., 2014. Quantitative assessment of climate and human impacts on surface water resources in a typical semi-arid watershed in the middle reaches of the Yellow River from 1985 to 2006. International Journal of Climatology, 35 (1), 97–113. doi:10.1002/joc.3965
  • Hurkmans, R., et al., 2009. Effects of land use changes on streamflow generation in the Rhine basin. Water Resources Research, 45 (6). doi:10.1029/2008WR007574
  • Jones, J.A., 2000. Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, Western Cascades, Oregon. Water Resources Research, 36 (9), 2621–2642. doi:10.1029/2000WR900105
  • Jones, J.A. and Grant, G.E., 1996. Peak flow responses to clear‐cutting and roads in small and large basins, Western Cascades, Oregon. Water Resources Research, 32 (4), 959–974. doi:10.1029/95WR03493
  • Jones, J.A. and Grant, G.E., 2001. Comment on “peak flow responses to clear‐cutting and roads in small and large basins, Western Cascades, Oregon: a second opinion” by R. B. Thomas and W. F. Megahan. Water Resources Research, 37 (1), 175–178. doi:10.1029/2000WR900276
  • Kuraś, P.K., Alila, Y., and Weiler, M., 2012. Forest harvesting effects on the magnitude and frequency of peak flows can increase with return period. Water Resources Research, 48 (1). doi:10.1029/2011WR010705
  • Maske, S.P. and Processes, J.-M.K., 2014. Study on effect of surface roughness on overland flow from different geometric surfaces through numerical simulation. Hydrological Processes, 28, 2595–2616. doi:10.1002/hyp.9773
  • Matheussen, B., et al., 2000. Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Hydrological Processes, 14 (5), 867–885. doi:10.1002/(SICI)1099-1085(20000415)14:5<867::AID-HYP975>3.0.CO;2-5
  • Myneni, R.B., et al., 1997. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 35 (6), 1380–1393. doi:10.1109/36.649788
  • O’Connell, P.E., et al., 2007. Is there a link between agricultural land-use management and flooding? Hydrology and Earth System Sciences, 11 (1), 96–107. doi:10.5194/hess-11-96-2007
  • Ouellet, C., Saint-Laurent, D., and Normand, F., 2012. Flood events and flood risk assessment in relation to climate and land-use changes: Saint-François River, southern Québec, Canada. Hydrological Sciences Journal, 57 (2), 313–325. doi:10.1080/02626667.2011.645475
  • Perron, T.J., et al., 2016. Earth science: megafloods downsized. Nature, 538, 174–175. doi:10.1038/538174a
  • Qi, W., et al., 2015. Global Land Data Assimilation System data assessment using a distributed biosphere hydrological model. Journal of Hydrology, 528, 652–667. doi:10.1016/j.jhydrol.2015.07.011
  • Qi, W., et al., 2016a. Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations. Hydrology and Earth System Sciences, 20 (2), 903–920. doi:10.5194/hess-20-903-2016
  • Qi, W., et al., 2016b. Imprecise probabilistic estimation of design floods with epistemic uncertainties. Water Resources Research, 52 (6), 4823–4844. doi:10.1002/2015WR017663
  • Qi, W., et al., 2016c. Quantifying uncertainties in extreme flood predictions under climate change for a medium-sized basin in northeast China. Journal of Hydrometeorology, 17, 3099–3112. doi:10.1175/JHM-D-15-0212.1
  • Qi, W., 2017. A non-stationary cost-benefit analysis approach for extreme flood estimation to explore the nexus of ‘risk, cost and non-stationarity’. Journal of Hydrology, 554, 128–136. doi:10.1016/j.jhydrol.2017.09.009
  • Qi, W., et al., 2018b. An ensemble-based dynamic Bayesian averaging approach for discharge simulations using multiple global precipitation products and hydrological models. Journal of Hydrology, 558, 405–420. doi:10.1016/j.jhydrol.2018.01.026
  • Qi, W., et al., 2018c. Impact of robustness of hydrological model parameters on flood prediction uncertainty. Journal of Flood Risk Management, 528, e12488. doi:10.1111/jfr3.12488
  • Qi, W. and Liu, J., 2018. A non-stationary cost-benefit based bivariate extreme flood estimation approach. Journal of Hydrology, 557, 589–599. doi:10.1016/j.jhydrol.2017.12.045
  • Qi, W., Liu, J., and Chen, D., 2018a. Evaluations and improvements of GLDAS2.0 and GLDAS2.1 forcing data’s applicability for basin scale hydrological simulations in the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 123, 13128–13148. doi:10.1029/2018JD029116
  • Qi, W., Liu, J., and Leung, F., 2019. A framework to quantify impacts of elevated CO2 concentration, global warming and leaf area changes on seasonal variations of water resources on a river basin scale. Journal of Hydrology, 570, 508–522. doi:10.1016/j.jhydrol.2019.01.015
  • Rabus, B., et al., 2003. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57 (4), 241–262. doi:10.1016/S0924-2716(02)00124-7
  • Rehana, S. and Mujumdar, P.P., 2011. River water quality response under hypothetical climate change scenarios in Tunga Bhadra river, India. Hydrological Processes, 25 (22), 3373–3386. doi:10.1002/hyp.8057
  • Rogger, M., et al., 2017. Land use change impacts on floods at the catchment scale: challenges and opportunities for future research. Water Resources Research, 53, 5209–5219. doi:10.1002/2017WR020723
  • Saurral, R.I., Barros, V.R., and Lettenmaier, D.P., 2008. Land use impact on the Uruguay River discharge. Geophysical Research Letters, 35 (12). doi:10.1029/2008GL033707
  • Sellers, P.J., et al., 1986. A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Sciences, 43 (6), 505–531. doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
  • Sellers, P.J., et al., 1996a. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model Formulation. Journal of Climate, 9 (4), 676–705.
  • Sellers, P.J., et al., 1996b. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data. Journal of Climate, 9 (4), 706–737.
  • Sellers, P.J., Fennessy, M.J., and Dickinson, R.E., 2007. A numerical approach to calculating soil wetness and evapotranspiration over large grid areas. Journal of Geophysical Research: Atmospheres (1984–2012), 112 (D18). doi:10.1029/2007JD008781
  • Shit, P., and Maiti, R., 2012. Rill hydraulics – an experimental study on gully basin in lateritic upland of Paschim Medinipur, West Bengal, India. Journal of Geography and Geology, 4 (4), 1–11. doi:10.5539/jgg.v4n4p1
  • Shrestha, M., et al., 2013. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote sensing data. Hydrology and Earth System Sciences, 10 (9), 11711–11753. doi:10.5194/hessd-10-11711-2013
  • Slater, L.J. and Wilby, R.L., 2017. Measuring the changing pulse of rivers. Science, 357 (6351), 552. doi:10.1126/science.aao2441
  • Song, X.P., et al., 2017. Benefits of trees in tropical cities. Science, 356 (6344), 1241. doi:10.1126/science.aan6642
  • Thober, S., et al., 2018. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environmental Research Letters, 13 (1), 14003. doi:10.1088/1748-9326/aa9e35
  • Tonina, D., et al., 2008. Hydrological response to timber harvest in northern Idaho: implications for channel scour and persistence of salmonids. Hydrological Processes, 22 (17), 3223–3235. doi:10.1002/hyp.v22:17
  • Wahren, A., Schwärzel, K., and Feger, K.H., 2012. Potentials and limitations of natural flood retention by forested land in headwater catchments: evidence from experimental and model studies. Journal of Flood Risk Management, 5 (4), 321–335. doi:10.1111/j.1753-318X.2012.01152.x
  • Walling, B., et al., 2017. Estimation of environmental flow incorporating water quality and hypothetical climate change scenarios. Environmental Monitoring and Assessment, 189 (5), 225. doi:10.1007/s10661-017-5942-2
  • Wang, F., et al., 2012. Ensemble hydrological prediction-based real-time optimization of a multiobjective reservoir during flood season in a semiarid basin with global numerical weather predictions. Water Resources Research, 48 (7). doi:10.1029/2011WR011366
  • Wang, L., et al., 2009a. Improving the hydrology of the Simple Biosphere Model 2 and its evaluation within the framework of a distributed hydrological model. Hydrological Sciences Journal, 54 (6), 989–1006. doi:10.1623/hysj.54.6.989
  • Wang, L., et al., 2009b. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99). Journal of Geophysical Research: Atmospheres, 114, D08107. doi:10.1029/2008JD010800
  • Wang, L., et al., 2009c. Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin. Journal of Hydrology, 377 (1–2), 21–34. doi:10.1016/j.jhydrol.2009.08.005
  • Wang, L., et al., 2010a. Frozen soil parameterization in a distributed biosphere hydrological model. Hydrology and Earth System Sciences, 14 (3), 557–571. doi:10.5194/hess-14-557-2010
  • Wang, L., et al., 2010b. The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change. Hydrological Processes, 24 (9), 1123–1132. doi:10.1002/hyp.v24:9
  • Wells, J.A., et al., 2016. Rising floodwaters: mapping impacts and perceptions of flooding in Indonesian Borneo. Environmental Research Letters, 11 (6), 64016. doi:10.1088/1748-9326/11/6/064016
  • Whitfield, P.H., 2012. Floods in future climates: a review. Journal of Flood Risk Management, 5 (4), 336–365. doi:10.1111/jfr3.2012.5.issue-4
  • Wu, Y., Liu, S., and Abdul-Aziz, O.I., 2012a. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT. Climatic Change, 110 (3–4), 977–1003. doi:10.1007/s10584-011-0087-8
  • Wu, Y., Liu, S., and Gallant, A.L., 2012b. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Science of the Total Environment, 430, 150–160. doi:10.1016/j.scitotenv.2012.04.058
  • Xue, B.-L., et al., 2013. Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model. Journal of Geophysical Research: Atmospheres, 118 (16), 8857–8868.
  • Yang, D., 1998. Distributed hydrological model using hillslope discretization based on catchment area function: development and applications. Tokyo: University of Tokyo.
  • Yang, D., Herath, S., and Musiake, K., 1997. Development of a geomorphologic properties extracted from DEMs for hydrologic modeling. Annual Journal of Hydraulic Engineering, JSCE, 47, 49–65.
  • Yang, X., et al., 2016. Evaluation of the effect of land use/cover change on flood characteristics using an integrated approach coupling land and flood analysis. Hydrology Research, 47 (6), 1161–1171. doi:10.2166/nh.2016.108
  • Zaitchik, B.F., Rodell, M., and Olivera, F., 2010. Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resources Research, 46 (6), W06507. doi:10.1029/2009WR007811
  • Zhang, S.-T., et al., 2016. Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow. Water Science and Engineering, 9 (3), 249–255. doi:10.1016/j.wse.2016.07.001
  • Zhou, G., et al., 2010. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resources Research, 46 (9). doi:10.1029/2009WR008829
  • Zhou, Y., Liu, Y., and Wu, W., 2016. Disaster risk: strengthen China’s flood control. Nature, 536, 396. doi:10.1038/536396e
  • Zwiers, F.W., 1987. A potential predictability study conducted with an atmospheric general circulation model. Monthly Weather Review, 115 (12), 2957–2974. doi:10.1175/1520-0493(1987)115<2957:APPSCW>2.0.CO;2
  • Zwiers, F.W., 1996. Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dynamics, 12 (12), 825–847. doi:10.1007/s003820050146

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.