3,791
Views
28
CrossRef citations to date
0
Altmetric
Special Issue: Advancing socio-hydrology

Exploring the role of risk perception in influencing flood losses over time

ORCID Icon, &
Pages 12-20 | Received 15 Mar 2019, Accepted 28 Aug 2019, Published online: 29 Oct 2019

References

  • Ahmad, S. and Simonovic, S.P., 2000. System dynamics modeling of reservoir operations for flood management. Journal of Computing in Civil Engineering ASCE, 14 (3), 190–198. doi:10.1061/(ASCE)0887-3801(2000)14:3(190)
  • Bakarji, J., O’Malley, D., and Vesselinov, V.V., 2017. Agent-based socio-hydrological hybrid modeling for water resource management. Water Resources Management, 31, 3881. doi:10.1007/s11269-017-1713-7
  • Barnett, J. and O’Neill, S., 2010. Maladaptation. Global Environmental Change, 20, 211–213. doi:10.1016/j.gloenvcha.2009.11.004
  • Berger, T., et al., 2007. Water Resources Management, 21, 129. doi: 10.1007/s11269-006-9045-z
  • Blöschl, G., et al., 2019. Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 64 (10), 1141–1158. doi:10.1080/02626667.2019.1620507
  • Churchman, C., 1967. Guest editorial: wicked problems. Management Science, 14, 141–142.
  • Ciullo, A., et al., 2017. Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems. Hydrological Sciences Journal, 62 (6), 880–891. doi:10.1080/02626667.2016.1273527
  • Da Deppo, L., Datei, C., and Salandin, S., 2004. Sistemazione dei Corsi D’acqua [in Italian]. Padova, Italy: Libreria Int. Cortina Padova.
  • Di Baldassarre, G., et al., 2010. Flood fatalities in Africa: from diagnosis to mitigation. Geophysical Research Letters, 37 (22), 2–6. doi:10.1029/2010GL045467
  • Di Baldassarre, G., et al., 2013a. Towards understanding the dynamic behaviour of floodplains as human-water systems. Hydrology and Earth System Sciences, 17, 3235–3244. doi:10.5194/hess-17-3235-2013
  • Di Baldassarre, G., et al., 2013b. Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17 (8), 3295–3303. doi:10.5194/hess-17-3295-2013
  • Di Baldassarre, G., et al., 2015. Debates—perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resources Research, 51, 4770–4781. doi:10.1002/2014WR016416
  • Di Baldassarre, G., et al., 2017. Drought and flood in the Anthropocene : feedback mechanisms in reservoir operation. Earth System Dynamics, 8, 225–233. doi:10.5194/esd-8-225-2017
  • Douglas, M. and Wildavsky, A., 1982. Risk and culture: an essay on the selection oftechnical and environmental dangers. Berkeley, CA: University of California Press.
  • Dryzek, J., 2013. The Politics of the Earth: environmental Discourses (Third Edit). New York, NY, USA: Oxford University Press.
  • Du, J., et al., 2012. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. Journal of Hydrology, 464, 127–139. doi:10.1016/j.jhydrol.2012.06.057
  • Elshafei, Y., et al., 2014. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach. Hydrology and Earth System Sciences, 18, 2141–2166. doi:10.5194/hess-18-2141-2014
  • Garde-Hansen, J., et al., 2017. Sustainable flood memory: remembering as resilience. Memory Studies, 10 (4), 384–405. doi:10.1177/1750698016667453
  • Gohari, A., Mirchi, A., and Madani, K., 2017. Water Resources Management, 31, 1413–1434. doi:10.1007/s11269-017-1575-z
  • Hanak, E., 2011. Managing California’s water: from conflict to reconciliation. San Francisco, CA: Public Policy Institute of California.
  • Kundzewicz, Z.W. and Kaczmarek, Z., 2009. Coping with hydrological extremes. Water International, 25 (1), 66–75. doi:10.1080/02508060008686798
  • Liu, Y., et al., 2014. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji–tire model. Hydrology and Earth System Sciences, 18, 1289–1303. doi:10.5194/hess-18-1289-2014
  • Logan, T.M., Guikema, S.D., and Bricker, J.D., 2018. Hard-adaptive measures can increase vulnerability to storm surge and tsunami hazards over time. Nature Sustainability, 1 (9), 526–530. doi:10.1038/s41893-018-0137-6
  • Loucks, D.P., 2015. Debates—perspectives on socio‐hydrology: simulating hydrologic‐human interactions. Water Resources Research, 51, 4789–4794. doi:10.1002/2015WR017002
  • Magnan, A.K., et al., 2016. Addressing the risk of maladaptation to climate change. WIREs Climate Change, 7, 646–665. doi:10.1002/wcc.409
  • Mård, J., Di Baldassarre, G., and Mazzoleni, M., 2018. Nighttime light data reveal how flood protection shapes human proximity to rivers. Science Advances, 4, 8. doi:10.1126/sciadv.aar5779
  • Montanari, A., et al., 2013. “Panta Rhei—everything Flows”: change in hydrology and society—the IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 58, 1256–1275. doi:10.1080/02626667.2013.809088
  • Montesarchio, V., et al., 2014. Comparison of methodologies for flood rainfall thresholds estimation. Natural Hazards, 75 (1), 909–934. doi:10.1007/s11069-014-1357-3
  • Nardi, F., et al., 2019. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Scientific Data, 6, doi: 10.1038/sdata.2018.309
  • Ostrom, E., 2000. Collective action and the evolution of social norms. Journal of Economics Perspectives, 14 (3), 137–158. doi:10.1257/jep.14.3.137
  • Penning-Rowsell, E.C., 1996. Flood-hazard response in Argentina. Geographical Review, 86 (1), 72–90. doi:10.2307/215142
  • Prosdocimi, I., Kjeldsen, T.R., and Miller, J.D., 2015. Detection and attribution of urbanization effect on flood extremes using nonstationary flood-frequency models. Water Resources Research, 51, 4244–4262. doi:10.1002/2015WR017065
  • Raaijmakers, R., Krywkow, J., and van der Veen, A., 2008. Flood risk perceptions and spatial multi-criteria analysis: an exploratory research for hazard mitigation. Natural Hazards, 46, 307. doi:10.1007/s11069-007-9189-z
  • Ridolfi, E., et al., 2013. Evaluation of rainfall thresholds through entropy: influence of bivariate distribution selection. Irrigation and Drainage, 62, S2. doi:10.1002/ird.1807
  • Scolobig, A., et al., 2017. Warning system options for landslide risk: a case study in upper Austria. Resources, 6 (3), 37. doi:10.3390/resources6030037
  • Scolobig, A., De Marchi, B., and Borga, M., 2012. The missing link between flood risk awareness and preparedness: findings from case studies in an Alpine. Natural Hazards, 63, 499–520. doi:10.1007/s11069-012-0161-1
  • Sivapalan, M., 2015. Debates—perspectives on socio‐hydrology: changing water systems and the “tyranny of small problems”—socio‐hydrology. Water Resources Research, 51 (6), 4795–4805. doi:10.1002/2015WR017080
  • Steg, L. and Sievers, I., 2000. Cultural theory of individual perceptions of environmental risks. Environment and Behavior, 32 (2), 248–267. doi:10.1177/00139160021972513
  • Suriya, S. and Mudgal, B.V., 2012. Impact of urbanization on flooding: the Thirusoolam sub watershed – A case study. Journal of Hydrology, 412, 210–219. doi:10.1016/j.jhydrol.2011.05.008
  • Thompson, M., Ellis, R., and Wildavsky, A., 1990. Cultural theory. Boulder, CO: Westview Press.
  • Tierney, K., 2014. The social roots of risk: producing disasters, promoting resilience. Stanford, CA: Stanford University Press.
  • Ullberg, S.B., 2018. Forgetting flooding?: post-disaster livelihood and embedded remembrance in Suburban Santa Fe, Argentina. Nature and Culture, 13, 27–45.
  • Viglione, A., et al., 2016. Attribution of regional flood changes based on scaling fingerprints. Water Resources Research, 52, 5322–5340. doi:10.1002/2016WR019036
  • Watkins, J.W.N., 1952. Ideal types and historical explanation. The British Journal for the Philosophy of Science, 3 (9), 22–43. doi:10.1093/bjps/III.9.22
  • White, G.F. (1945). Human adjustments to floods. research paper no. 29, Department of Geography Research, Chicago University, USA.