411
Views
9
CrossRef citations to date
0
Altmetric
Articles

Determining short-term changes in the hydraulic properties of a sandy-loam soil by a three-run infiltration experiment

ORCID Icon, , & ORCID Icon
Pages 1191-1203 | Received 28 Mar 2019, Accepted 20 Dec 2019, Published online: 12 Mar 2020

References

  • Alagna, V., et al., 2018a. A test of water pouring height and run intermittence effects on single-ring infiltration rates. Hydrological Processes, 32, 3793–3804. doi:10.1002/hyp.13290
  • Alagna, V., et al., 2016. Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24–33. doi:10.1016/j.geoderma.2015.12.029
  • Alagna, V., et al., 2018b. The impact of the age of vines on soil hydraulic conductivity in vineyards in Eastern Spain. Water, 10 (1). doi:10.3390/w10010014.
  • Angulo-Jaramillo, R., et al., 2019. Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. Journal of Hydrology, 576, 239–261. doi:10.1016/j.jhydrol.2019.06.007
  • Angulo-Jaramillo, R., et al., 2016. Infiltration measurements for soil hydraulic characterization. Springer International Publishing. doi:10.1007/978-3-319-31788-5.
  • Assouline, S. and Mualem, Y., 2002. Infiltration during soil sealing: the effect of areal heterogeneity of soil hydraulic properties. Water Resources Research, 38 (12), 1286. doi:10.1029/2001WR001168.
  • Bagarello, V., et al., 2014a. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501. doi:10.1016/j.geoderma.2013.08.032
  • Bagarello, V., et al., 2017a. Height of water pouring effects on infiltration runs carried out in an initially wet sandy-loam soil. Chemical Engineering Transactions, 58, 721–726. doi:10.3303/cet1758121
  • Bagarello, V., et al., 2014b. A test of the Beerkan Estimation of Soil Transfer parameters (BEST) procedure. Geoderma, 221–222, 20–27. doi:10.1016/j.geoderma.2014.01.017
  • Bagarello, V., Di Prima, S., and Iovino, M., 2014c. Comparing alternative algorithms to analyse the beerkan infiltration experiment. Soil Science Society of America Journal, 78 (3), 724. doi:10.2136/sssaj2013.06.0231.
  • Bagarello, V., Di Prima, S., and Iovino, M., 2017b. Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma, 303, 70–77. doi:10.1016/j.geoderma.2017.04.030
  • Bagarello, V., et al., 2013. Using a transient infiltrometric technique for intensively sampling field-saturated hydraulic conductivity of a clay soil in two runoff plots. Hydrological Processes, 27 (24), 3415–3423. doi:10.1002/hyp.9448.
  • Bagarello, V. and Sgroi, A., 2007. Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity at the surface of a sandy loam soil. Soil and Tillage Research, 94 (2), 283–294. doi:10.1016/j.still.2006.08.001.
  • Bagarello, V., et al., 2010. Physical and hydraulic characterization of a clay soil at the plot scale. Journal of Hydrology, 387 (1–2), 54–64. doi:10.1016/j.jhydrol.2010.03.029.
  • Ben-Hur, M., Shainberg, I., and Morin, J., 1987. Variability of infiltration in a field with surface-sealed soil 1. Soil Science Society of America Journal, 51 (5), 1299–1302. doi:10.2136/sssaj1987.03615995005100050037x.
  • Boiffin, J. 1984. La dégradation structurale des couches superficielles du sol sous l’action des pluies. These de Docteur-ingenieur, Institut National Agronomique Paris Grignon,297. Available from: https://prodinra.inra.fr/record/702090.
  • Bouma, J., 2016. Hydropedology and the societal challenge of realizing the 2015 United Nations sustainable development goals. Vadose Zone Journal, 15 (12), vzj2016.09.0080. doi:10.2136/vzj2016.09.0080.
  • Brooks, R.H. and Corey, T. 1964. hydraulic properties of porous media. Hydrol. Paper 3. Colorado State University, Fort Collins.
  • Cerdà, A., 1996. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69 (3–4), 217–232. doi:10.1016/0016-7061(95)00062-3.
  • Cerdà, A., 1997. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology, 198 (1–4), 209–225. doi:10.1016/S0022-1694(96)03295-7.
  • Cerdà, A., 1999. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35 (1), 319–328. doi:10.1029/98WR01659.
  • Coutinho, A.P., et al., 2016. Hydraulic characterization and hydrological behaviour of a pilot permeable pavement in an urban centre, Brazil. Hydrological Processes, 30 (23), 4242–4254. doi:10.1002/hyp.10985.
  • Di Prima, S., et al., 2017. Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil. Hydrological Processes, 31, 3520–3532. doi:10.1002/hyp.11273
  • Di Prima, S., et al., 2018. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. CATENA, 167, 373–384. doi:10.1016/j.catena.2018.05.013
  • Di Prima, S., et al., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. doi:10.1016/j.geoderma.2015.08.006
  • Dikinya, O., Hinz, C., and Aylmore, G., 2008. Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma, 146 (1–2), 192–200. doi:10.1016/j.geoderma.2008.05.014.
  • Dohnal, M., et al., 2016. Interpretation of ponded infiltration data using numerical experiments. Journal of Hydrology and Hydromechanics, 64 (3), 289–299. doi:10.1515/johh-2016-0020.
  • Drewry, J.J., 2006. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: a review. Agriculture, Ecosystems and Environment, 114 (2), 159–169. doi:10.1016/j.agee.2005.11.028.
  • Elrick, D.E. and Reynolds, W.D., 1992. Methods for analysing constant-head well permeameter data. Soil Science Society of America Journal, 56 (1), 320. doi:10.2136/sssaj1992.03615995005600010052x.
  • Fodor, N., et al., 2011. Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma, 165 (1), 60–68. doi:10.1016/j.geoderma.2011.07.004.
  • Fohrer, N., et al., 1999. Changing soil and surface conditions during rainfall: single rainstorm/subsequent rainstorms. CATENA, 37 (3–4), 355–375. doi:10.1016/S0341-8162(99)00026-0.
  • Hu, G., et al., 2018. Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau. Hydrological Sciences Journal, 1–12. doi:10.1080/02626667.2018.1500745.
  • Jarvis, N., et al., 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology and Earth System Sciences, 17 (12), 5185–5195. doi:10.5194/hess-17-5185-2013.
  • Keesstra, S., et al., 2018. Soil-related sustainable development goals: four concepts to make land degradation neutrality and restoration work. Land, 7 (4), 133. doi:10.3390/land7040133.
  • King, B.A. and Bjorneberg, D.L., 2012. Transient soil surface sealing and infiltration model for bare soil under droplet impact. Transactions of the ASABE, 55 (3), 937–945. doi:10.13031/2013.41525.
  • Lassabatere, L., et al., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Science Society of America Journal, 70 (2), 521. doi:10.2136/sssaj2005.0026.
  • Lassabatere, L., et al., 2019. Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. Hydrological Sciences Journal, 64 (2), 165–178. doi:10.1080/02626667.2018.1560448.
  • Le Bissonnais, Y. and Singer, M.J., 1992. Crusting, runoff, and erosion response to soil water content and successive rainfalls. Soil Science Society of America Journal, 56 (6), 1898–1903. doi:10.2136/sssaj1992.03615995005600060042x.
  • Levy, G., Shainberg, I., and Morin, J., 1986. Factors affecting the stability of soil crusts in subsequent storms. Soil Science Society of America Journal, 50 (1), 196–201. doi:10.2136/sssaj1986.03615995005000010037x.
  • Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62 (318), 399–402. doi:10.1080/01621459.1967.10482916.
  • Lozano-Baez, S.E., et al., 2019. Recovery of soil hydraulic properties for assisted passive and active restoration: assessing historical land use and forest structure. Water, 11 (1), 86. doi:10.3390/w11010086.
  • Mapa, R.B., Green, R.E., and Santo, L., 1986. Temporal variability of soil hydraulic properties with wetting and drying subsequent to tillage. Soil Science Society of America Journal, 50 (5), 1133–1138. doi:10.2136/sssaj1986.03615995005000050008x.
  • Morin, J. and Benyamini, Y., 1977. Rainfall infiltration into bare soils. Water Resources Research, 13 (5), 813–817. doi:10.1029/WR013i005p00813.
  • Mubarak, I., et al., 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma, 150 (1–2), 158–165. doi:10.1016/j.geoderma.2009.01.022.
  • Nasta, P., et al., 2012. Analysis of the role of tortuosity and infiltration constants in the Beerkan method. Soil Science Society of America Journal, 76 (6), 1999–2005. doi:10.2136/sssaj2012.0117n.
  • Ndiaye, B., et al., 2005. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil. Journal of Hydrology, 307 (1–4), 294–311. doi:10.1016/j.jhydrol.2004.10.016.
  • Rab, M.A., 2004. Recovery of soil physical properties from compaction and soil profile disturbance caused by logging of native forest in Victorian Central Highlands, Australia. Forest Ecology and Management, 191 (1), 329–340. doi:10.1016/j.foreco.2003.12.010.
  • Reynolds, W., Elrick, D., and Youngs, E., 2002. 3.4.3.2.a Single-ring and double- or concentric-ring infiltrometers. In: J.H. Dane and G.C. Topp, eds.. Methods of soil analysis, part 4, physical methods. Madison, WI: SSSA Book Series, No. 5. Soil Sci. Soc. Am., 821–826.
  • Reynolds, W.D., et al., 2000. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Science Society of America Journal, 64 (2), 478–484. doi:10.2136/sssaj2000.642478x.
  • Reynolds, W.D. and Lewis, J.K., 2012. A drive point application of the Guelph permeameter method for coarse-textured soils. Geoderma, 187–188, 59–66. doi:10.1016/j.geoderma.2012.04.004
  • Somaratne, N.M. and Smettem, K.R.J., 1993. Effect of cultivation and raindrop impact on the surface hydraulic properties of an Alfisol under wheat. Soil and Tillage Research, 26 (2), 115–125. doi:10.1016/0167-1987(93)90038-Q.
  • Souza, E.S., et al., 2014. Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor beans (Ricinus communis L.) in the northeastern region of Brazil. Soil and Tillage Research, 141, 55–61. doi:10.1016/j.still.2014.04.004
  • Torri, D., et al., 1999. Within-storm soil surface dynamics and erosive effects of rainstorms. CATENA, 38 (2), 131–150. doi:10.1016/S0341-8162(99)00059-4.
  • Touma, J., Voltz, M., and Albergel, J., 2007. Determining soil saturated hydraulic conductivity and sorptivity from single ring infiltration tests. European Journal of Soil Science, 58 (1), 229–238. doi:10.1111/j.1365-2389.2006.00830.x.
  • Ugarte Nano, C.C., Nicolardot, B., and Ubertosi, M., 2015. Near-saturated hydraulic conductivity measured on a swelling silty clay loam for three integrated weed management based cropping systems. Soil and Tillage Research, 150, 192–200. doi:10.1016/j.still.2015.02.003
  • van De Giesen, N.C., Stomph, T.J., and de Ridder, N., 2000. Scale effects of Hortonian overland flow and rainfall–runoff dynamics in a West African catena landscape. Hydrological Processes, 14 (1), 165–175. doi:10.1002/(SICI)1099-1085(200001)14:1<165::AID-HYP920>3.0.CO;2-1.
  • Votrubova, J., et al., 2017. Ponded infiltration in a grid of permanent single-ring infiltrometers: spatial versus temporal variability. Journal of Hydrology and Hydromechanics, 65 (3), 244–253. doi:10.1515/johh-2017-0015.
  • Warrick, A.W., 1998. Spatial variability. In: D. Hillel, ed. Environmental soil physics. San Diego, CA: Academic Press, 655–675.
  • White, I., Sully, M.J., and Melville, M.D., 1989. Use and hydrological robustness of time-to-incipient-ponding. Soil Science Society of America Journal, 53 (5), 1343–1346. doi:10.2136/sssaj1989.03615995005300050007x.
  • Yilmaz, D., et al., 2010. hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone Journal, 9 (1), 107. doi:10.2136/vzj2009.0039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.