932
Views
20
CrossRef citations to date
0
Altmetric
Research Article

A minimalistic approach for evapotranspiration estimation using the Prophet model

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1994-2006 | Received 07 Oct 2019, Accepted 29 Apr 2020, Published online: 13 Jul 2020

References

  • Abdullah, S.S., et al., 2015. Extreme learning machines: a new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527, 184–195. doi:10.1016/j.jhydrol.2015.04.073
  • Aguilera, H., et al., 2019. Towards flexible groundwater-level prediction for adaptive water management: using Facebook’s Prophet forecasting approach. Hydrological Sciences Journal, 64 (12), 1504–1518. doi:10.1080/02626667.2019.1651933
  • Alkaeed, O., et al., 2006. Comparison of several reference evapotranspiration methods for Itoshima Peninsula Area, Fukuoka, Japan. Memoirs of the Faculty of Engineering, Kyushu University, 66 (1), 1–14.
  • Allen, R.G., et al. 1998. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage, Paper No. 56. Rome: Food and Agriculture Organization of the United Nations.
  • Almorox, J. and Grieser, J., 2016. Calibration of the Hargreaves–Samani method for the calculation of reference evapotranspiration in different Koppen climate classes. Hydrology Research, 47 (2), 521–531. doi:10.2166/nh.2015.091
  • Almorox, J., Quej, V.H., and Marti, P., 2015. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Koppen climate classes. Journal of Hydrology, 528, 514–522. doi:10.1016/j.jhydrol.2015.06.057
  • Barzegar, R., et al., 2017. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Science of Total Environment, 599–600, 20–31. doi:10.1016/j.scitotenv.2017.04.189
  • Beguería, S. and Vicente-Serrano, S.M. 2017. Package ‘SPEI’, calculation of the standardised precipitation-evapotranspiration index. [Accessed 1 July 2020]. https://cran.r-project.org/web/packages/SPEI/index.html.
  • Castelli, M., et al., 2018. Two-source energy balance modeling of evapotranspiration in Alpine grasslands. Remote Sensing of Environment, 209, 327–342. doi:10.1016/j.rse.2018.02.062
  • Chia, M.Y., et al., 2020. Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—A review. Agronomy, 10, 101. doi:10.3390/agronomy10010101
  • Cleveland, R.B., et al., 1990. STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6 (1), 3–73.
  • Coats, R.N., 1999. Evaporation, evapotranspiration. In: Environmental geology. Encyclopedia of earth science. Dordrecht: Springer. doi:10.1007/1-4020-4494-1_131
  • Cobaner, M., 2011. Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology, 398 (3–4), 292–302. doi:10.1016/j.jhydrol.2010.12.030
  • Colaizzi, P.D., et al., 2012. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Advances in Water Resources, 50, 134–151. doi:10.1016/j.advwatres.2012.06.004
  • Cortes, C. and Vapnik, V., 1995. Support vector networks. Machine Learning, 20, 273–297. doi:10.1007/BF00994018
  • Dou, X. and Yang, Y., 2018. Modeling evapotranspiration response to climatic forcings using data-driven techniques in grassland ecosystems. Advances in Meteorology, 1–18. doi:10.1155/2018/1824317
  • Droogers, P. and Allen, R.G., 2002. Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16 (1), 33–45. doi:10.1023/A:1015508322413
  • Fan, J., et al., 2018. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225–241. doi:10.1016/j.agrformet.2018.08.019
  • Feng, Y., et al., 2016. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology, 536, 376–383. doi:10.1016/j.jhydrol.2016.02.053
  • Feng, Y., et al., 2017. Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agricultural Water Management, 181, 1–9. doi:10.1016/j.agwat.2016.11.010
  • Ferreira, L.B., et al., 2019. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–a new approach. Journal of Hydrology, 572, 556–570. doi:10.1016/j.jhydrol.2019.03.028
  • Fisher, J.B., et al., 2017. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53, 2618–2626. doi:10.1002/2016WR020175
  • Gocić, M., et al., 2015. Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture, 113, 164–173. doi:10.1016/j.compag.2015.02.010
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. Journal of Hydrology, 377, 80–91. doi:10.1016/j.jhydrol.2009.08.003
  • Haith, D.A. and Shoemaker, L.L., 1987. Generalized watershed loading functions for stream flow nutrients. Water Resources Bulletin, 23, 471–478. doi:10.1111/j.1752-1688.1987.tb00825.x
  • Hargreaves, G.H., 1994. Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 120 (6), 1132–1139. doi:10.1061/(ASCE)0733-9437(1994)120:6(1132)
  • Hargreaves, G.H. and Samani, Z.A., 1982. Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108 (3), 225–230.
  • Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1, 96–99. doi:10.13031/2013.26773
  • Harvey, A.C. and Shephard, N., 1993. Structural time series models. In: G. Maddala, C. Rao, and H. Vinod, eds.. Handbook of statistics. Vol. 11. Amsterdam, Netherlands: Elsevier, 261–302.
  • Huang, et al., 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029–1041. doi:10.1016/j.jhydrol.2019.04.085
  • Huntington, T.G., 2010. Climate warming-induced intensification of the hydrological cycle: an assessment of the published record and potential impacts on agriculture. Advances in Agronomy, 109, 1–53.
  • Irmak, S., et al., 2003. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of Irrigation and Drainage Engineering, 129 (5), 336–347. doi:10.1061/(ASCE)0733-9437(2003)129:5(336)
  • Jones, J.W. and Ritchie, J.T., 1990. Crop growth models. In: G.J. Hoffman, T.A. Howel, and K.H. Solomon, eds. Management of farm irrigation system. ASAE monograph No. 9. St. Joseph, MI: ASAE, 63–89.
  • Karimi, S., et al., 2017. Modelling daily reference evapotranspiration in humid locations of South Korea using local and cross-station data management scenarios. International Journal of Climatology, 37, 3238–3246. doi:10.1002/joc.4911
  • Kisi, O., 2015. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528, 312–320. doi:10.1016/j.jhydrol.2015.06.052
  • Kisi, O., 2018. Evaporation modelling by heuristic regression approaches using only temperature data. Hydrological Sciences Journal, 64 (4), 653–672. doi:10.1080/02626667.2019.1599487
  • Kisi, O. and Alizamir, M., 2018. Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: wavelet extreme learning machine vs wavelet neural networks. Agricultural and Forest Meteorology, 263, 41–48. doi:10.1016/j.agrformet.2018.08.007
  • Kisi, O. and Cimen, M., 2009. Evapotranspiration modelling using support vector machines. Hydrological Sciences Journal, 54 (5), 918–928. doi:10.1623/hysj.54.5.918
  • Kumar, M., et al., 2008. Comparative study of conventional and artificial neural network based ET0 estimation models. Irrigation Science, 26, 531–545. doi:10.1007/s00271-008-0114-3
  • Liu, G., et al., 2012. Comparison of two methods to derive time series of actual evapotranspiration using eddy covariance measurements in the southeastern Australia. Journal of Hydrology, 454–455, 1–6. doi:10.1016/j.jhydrol.2012.05.011
  • Malik, A. and Kisi, A., 2017. Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic approaches and climate based models. Computers and Electronics in Agriculture, 143, 302–313. doi:10.1016/j.compag.2017.11.008
  • Malik, A. and Kumar, A., 2015. Pan evaporation simulation based on daily meteorological data using soft computing techniques and multiple linear regression. Water Resources Management, 29 (6), 1859–1872. doi:10.1007/s11269-015-0915-0
  • Mattar, M.A., 2018. Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agricultural Water Management, 198, 28–38. doi:10.1016/j.agwat.2017.12.017
  • Mehdizadeh, S., 2018. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: offering a new approach for lagged ETo data-based modeling. Journal of Hydrology, 559, 794–812. doi:10.1016/j.jhydrol.2018.02.060
  • Mehdizadeh, S., Behmanesh, J., and Khalili, K., 2017. Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, 139, 103–114. doi:10.1016/j.compag.2017.05.002
  • Mendicino, G. and Senatore, A., 2013. Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in Southern Italy. Journal of Irrigation and Drainage Engineering, 139 (5), 349–362. doi:10.1061/(ASCE)IR.1943-4774.0000547
  • Meyer, D., et al., 2019. e1071: misc functions of the department of statistics, probability theory group, TU Wien. Available from https://cran.r-project.org/web/packages/e1071/index.html Accessed 1 Apr 2019.
  • Moghaddamnia, A., et al., 2008. Evaporation estimation using sup-port vector machines technique. World Academy of Science, Engineering and Technology, 43, 14–22.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900. doi:10.13031/2013.23153
  • Mouatadid, S., et al., 2019. Coupling the maximum overlap discrete wavelet transform and long shortterm memory networks for irrigation flow forecasting. Agricultural Water Management, 19, 72–85. doi:10.1016/j.agwat.2019.03.045
  • Nadiri, A.A., et al., 2017. Groundwater vulnerability indices conditioned by super-vised intelligence committee machine (SICM). Science of the Total Environment, 574, 691–706. doi:10.1016/j.scitotenv.2016.09.093
  • Nandagiri, L. and Kovoor, G.M., 2006. Performance evaluation of reference evapotranspiration equations across a range of Indian climates. Journal of Irrigation and Drainage Engineering, 132 (3), 238–249. doi:10.1061/(ASCE)0733-9437(2006)132:3(238)
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I -a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nourani, V., Elkiran, G., and Abdullahi, J., 2019. Multi-station artificial intelligence-based ensemble modeling of reference evapotranspiration using pan evaporation measurements. Journal of Hydrology, 577, 123958. doi:10.1016/j.jhydrol.2019.123958
  • Papacharalampous, G., Tyralis, H., and Koutsoyiannis, D., 2018. Predictability of monthly temperature and precipitation using automatic time series forecasting methods. Acta Geophysica, 66, 807–831. doi:10.1007/s11600-018-0120-7
  • Peel, M.C., Finlayson, B.L., and McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644. doi:10.5194/hess-11-1633-2007
  • Priestley, C.H.B. and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review, 100, 81–92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Purdy, A.J., et al., 2018. SMAP soil moisture improves global evapotranspiration. Remote Sensing of Environment, 1–14. doi:10.1016/j.rse.2018.09.023
  • R Core Development Team, 2019. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Raghavendra, S. and Dek, P.C., 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing, 19, 372–386. doi:10.1016/j.asoc.2014.02.002
  • Rahimikhoob, A., 2010. Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theoretical and Applied Climatology, 101, 83–91. doi:10.1007/s00704-009-0204-z
  • Rahman, A.T.M.S., et al., 2018. Modeling the changes in water balance components of the highly irrigated western part of Bangladesh. Hydrology and Earth System Sciences, 22, 4213–4228. doi:10.5194/hess-22-4213-2018
  • Rahman, A.T.M.S., et al., 2020. Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms. Advances in Water Resources, 141, 103595. doi:10.1016/j.advwatres.2020.103595
  • Seifi, A. and Riahi, H., 2018. Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, jwc2018003. doi:10.2166/wcc.2018.003
  • Shiri, J., et al., 2012. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). Journal of Hydrology, 414–415, 302–316. doi:10.1016/j.jhydrol.2011.11.004
  • Shiri, J., 2019. Modeling reference evapotranspiration in island environments: assessing the practical implications. Journal of Hydrology, 570, 265–280. doi:10.1016/j.jhydrol.2018.12.068
  • Singh, J., Knapp, H.V., and Demissie, M. 2004. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT.ISWS CR 2004-08. Champaign, IL: Illinois State Water Survey. Available from https://www.ideals.illinois.edu/handle/2142/94220 Accessed 16 Jun 2019.
  • Sudheer, K.P., Nayak, P.C., and Ramasastri, K.S., 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes, 17, 677–686. doi:10.1002/hyp.5103
  • Suryanarayana, C., et al., 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145, 324–335. doi:10.1016/j.neucom.2014.05.026
  • Tabari, H., et al., 2012. SVM, ANFIS, regression and climate-based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, 444, 78–89. doi:10.1016/j.jhydrol.2012.04.007
  • Taylor, S.J. and Letham, B., 2017. Forecasting at scale. The American Statistician, 72 (1), 37–45. doi:10.1080/00031305.2017.1380080
  • Taylor, S.J. and Letham, B. 2019. Prophet: automatic forecasting procedure, R package version 0.5. Available from https://cran.r-project.org/web/packages/Prophet/index.html [Accessed 1 Apr 2019].
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38 (1), 55–94. doi:10.2307/210739
  • Tikhamarine, Y., et al., 2020. Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches. Hydrological Sciences Journal. doi:10.1080/02626667.2019.1678750
  • Torres, A.F., Walker, W.R., and McKee, M., 2011. Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agricultural Water Management, 98 (4), 553–562. doi:10.1016/j.agwat.2010.10.012
  • Trajkovic, S., 2007. Hargreaves versus Penman-Monteith under humid conditions. Journal of Irrigation and Drainage Engineering, 133 (1), 38–42.
  • Traore, S., Wang, Y.M., and Kerh, T., 2010. Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agricultural Water Management, 97, 707–714. doi:10.1016/j.agwat.2010.01.002
  • Turc, L., 1961. Evaluation des besoins en eau d’irrigation, evapotranspiration potentielle, formule climatique simplifee et mise a jour. Annales Agronmique, 12 (1), 13–49. ( (in French)).
  • Tyralis, H. and Papacharalampous, G.A., 2018. Large-scale assessment of Prophet for multi-step ahead forecasting of monthly streamflow. Advances in Geosciences, 45, 147–153. doi:10.5194/adgeo-45-147-2018
  • Wang, L., et al., 2017. Evaporation modelling using different machine learning techniques. International Journal of Climatology, 37, 1076–1092. doi:10.1002/joc.5064
  • Wen, X., et al., 2015. Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resources Management, 29 (9), 3195–3209. doi:10.1007/s11269-015-0990-2
  • Wu, C.L., Chau, K.W., and Li, Y.S., 2009. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resources Research, 45, W08432. doi:10.1029/2007WR006737
  • Xu, C.‐.Y., et al., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration in Changjiang catchments. Journal of Hydrology, 327, 81–93. doi:10.1016/j.jhydrol.2005.11.029
  • Yassin, M.A., Alazba, A.A., and Mattar, M.A., 2016. Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, 163, 110–124. doi:10.1016/j.agwat.2015.09.009
  • Zhang, F., et al., 2016. Time series forecasting for building energy consumption using weighted support vector regression with differential evolution, optimization technique. Energy and Buildings, 126, 94–103. doi:10.1016/j.enbuild.2016.05.028
  • Zhang, J., et al., 2018. Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918–929. doi:10.1016/j.jhydrol.2018.04.065
  • Zhao, N., et al., 2018. Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: time-series analyses using the Prophet procedure. Atmospheric Environment, 192, 116–127. doi:10.1016/j.atmosenv.2018.08.050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.