398
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Projection of runoff characteristics as a response to regional climate change in a Central/Eastern European catchment

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2256-2273 | Received 18 Nov 2019, Accepted 27 May 2020, Published online: 11 Aug 2020

References

  • Addor, N. and Seibert, J., 2014. Bias correction for hydrological impact studies – beyond the daily perspective. Hydrological Processes, 28, 4823–4828. doi:10.1002/hyp.10238
  • Ahmed, S. and Tsanis, I., 2016. Watershed response to bias-corrected improved skilled precipitation and temperature under future climate – a case study on Spencer Creek Watershed, Ontario, Canada. Hydrology Current Research, 7, 246. doi:10.4172/2157-7587.1000246
  • Alfaro, S.C. and Gomes, L., 2001. Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. Journal of Geophysical Research, 106, d16. doi:10.1029/2000JD900339
  • Amani, A. and Lebel, T., 1997. Lagrangian kriging for the estimation of Sahelian rainfall at small time steps. Journal of Hydrology, 192, 125‒157. doi:10.1016/S0022-1694(96)03104-6
  • Andrej, C. and Kajfez-Bogataj, L., 2012. Simulation of maize yield in current and changed climatic conditions: addressing modelling uncertainties and the importance of bias correction in climate model simulations. European Journal of Agronomy, 37 (1), 83‒95.
  • Annis, A., et al., 2020. Quantifying the relative impact of hydrological and hydraulic modelling parameterizations on uncertainty of inundation maps. Hydrological Sciences Journal, 65, 507‒523. doi:10.1080/02626667.2019.1709640
  • Becker, A., et al., 2018. Implications of climate change for shipping: ports and supply chains. WIREs Climate Change, 9, e508. doi:10.1002/wcc.508
  • Bisselink, B., et al., 2018. Impact of a changing climate, land use, and water usage on water resources int he Danube river basin. Luxembourg: Publications Office of the European Union, EUR 29228 EN, ISBN 978-92-79-85889-5. doi:10.2760/89828/JRC111817
  • Blöschl, G., et al., 2017. Changing climate shifts timing of European floods. Science, 357 (6351), 588‒590. doi:10.1126/science.aan2506
  • Cameron, D., Beven, K., and Naden, P., 2000. Flood frequency estimation by continuous simulation under climate change (with uncertainty). Hydrology and Earth System Sciences, 4 (3), 393–405. doi:10.5194/hess-4-393-2000
  • Challinor, A.J., et al., 2018. Improving the use of crop models for risk assessment and climate change adaptation. Agricultural Systems, 159, 296–306. doi:10.1016/j.agsy.2017.07.010
  • Charalambous, J., Rahman, A., and Carroll, D., 2013. Application of Monte Carlo simulation technique to design flood estimation: a case study for North Johnstone River in Queensland, Australia. Water Resources Management, 27, 4099–4111. doi:10.1007/s11269-013-0398-9
  • Chen, J., et al., 2017. Impacts of weighting climate models for hydro-meteorological climate change studies. Journal of Hydrology, 549, 534–546. doi:10.1016/j.jhydrol.2017.04.025
  • Chen, J., Brissette, F.P., and Leconte, R., 2011. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology, 401, 190–202. doi:10.1016/j.jhydrol.2011.02.020
  • Christensen, J.H. and Christensen, O.B., 2003. Climate modelling: severe summertime flooding in Europe. Nature, 421, 805–806. doi:10.1038/421805a
  • Clark, M.P., et al., 2016. Characterizing uncertainty of the hydrologic impacts of climate change. Current Climate Change Reports, 2, 55–64. doi:10.1007/s40641-016-0034-x
  • Collins, W.J., et al., 2011. Development and evaluation of an earth-system model – Hadgem2. Geoscientific Model Development Discussions, 4, 997–1062. doi:10.5194/gmdd-4-997-2011
  • Cressie, N.A.C., 1985. Fitting variogram models by weighted least squares. Journal of the International Association for Mathematical Geology, 17, 563‒586. doi:10.1007/BF01032109
  • Dankers, R. and Feyen, L., 2008. Climate change impact on flood hazard in Europe: an assessment based on high-resolution climate simulations. Journal of Geophysical Research, 113, D19105. doi:10.1029/2007JD009719
  • Darcy, H., 1856. Les fontaines publiques de la ville de Dijon. Paris: Dalmont, 647.
  • Depla, I., et al., 2009. Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35 (8), 1225–1233. doi:10.1016/j.envint.2009.07.001
  • Diaz-Ramirez, J., et al., 2012. Parameter uncertainty methods in evaluating a lumped hydrological model. Obras y Proyectos, 12, 42‒56.
  • Dickinson, R.E., Henderson-Sellers, A., and Kennedy, P.J., 1993. Biosphere-atmosphere transfer scheme (BATS) Version 1e as coupled to the NCAR community climate model. NCAR Technical Note NCAR/TN-387 + STR. doi: 10.5065/D67W6959
  • Didovets, I., et al., 2017. Assessment of climate change impacts on water resources in three representative Ukrainian catchments using eco-hydrological modelling. Water, 9, 204. doi:10.3390/w9030204
  • Didovets, I., et al., 2019. Climate change impact on regional floods in the Carpathian region. Journal of Hydrology: Regional Studies, 22, 100590. doi:10.1016/j.ejrh.2019.01.002
  • Dirks, J.A., et al., 2015. Impacts of climate change on energy consumption and peak demand in buildings: a detailed regional approach. Energy, 79, 20‒32. doi:10.1016/j.energy.2014.08.081
  • EC (European Commission), 2019. Report from the commission to the European Parliament and the council on the implementation of the Water Framework Directive (200/60/EC) and the Floods Directive (2007/60/EC) Second River Basin Management Plans First Flood Risk Management Plans. Brussels, 26 February.
  • EEA (European Environment Agency), 2016. Flood risks and environmental vulnerability. European Environment Agency Report no. 1/2016. ISSN: 1977‒8449.
  • Ehret, U., et al., 2012. HESS Opinions: “Should we apply bias correction to global and regional climate model data?”. Hydrology and Earth System Sciences, 16, 3391–3404. doi:10.5194/hess-16-3391-2012
  • Eisner, S., et al., 2017. An ensembles analysis of climate change impacts on streamflow seasonality across 11 large river basins. Climatic Change, 141 (3), 401–417. doi:10.1007/s10584-016-1844-5
  • Elguindi, N., et al., 2011. Regional climatic model RegCM – user manual. Version 4.3. Trieste, Italy: ICTP, 32.
  • Emanuel, K.A., 1991. A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences, 48 (21), 2313–2335. doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
  • Evans, G.W., 2019. Projected behavioral impacts of global cliamte change. Annual Review of Psychology, 70, 449–474. doi:10.1146/annurev-psych-010418-103023
  • Fatichi, S., et al., 2015. High-resolution distributed analysis of climate and anthropogenic changes on the hydrology of an Alpine catchment. Journal of Hydrology, 525, 362–382. doi:10.1016/j.jhydrol.2015.03.036
  • Filho, W.L., et al., 2018. Strengthening climate change adaptation capacity in Africa – case studies from six major African cities and policy implications. Environmental Science & Policy, 86, 29–37. doi:10.1016/j.envsci.2018.05.004
  • Fritsch, J.M. and Chappell, C.F., 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. Journal of the Atmospheric Sciences, 37, 722–1733.
  • Garner, G., et al., 2015. Hydroclimatology of extreme river flows. Freshwater Biology, 60, 2461‒2476. doi:10.1111/fwb.12667
  • Giuntoli, I., et al., 2015. Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models. Earth System Dynamics, 6, 267–285. doi:10.5194/esd-6-267-2015
  • Gosling, S.N. and Arnell, N.W., 2016. A global assessment of the impact of climate change on water scarcity. Climatic Change, 134 (3), 371–385. doi:10.1007/s10584-013-0853-x
  • Grell, G.A., 1993. Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121 (3), 764–787. doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  • Hagemann, S., et al., 2011. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. Journal of Hydrometeorology, 12, 556–578. doi:10.1175/2011JHM1336.1
  • Hagemann, S. and Dümenil, L., 1998. A parameterization of the lateral waterflow for the global scale. Climate Dynamic, 14 (1), 17–31. doi:10.1007/s003820050205
  • Hall, J., et al., 2014. Understanding flood regime changes in Europe: a state-of-theart assessment. Hydrology and Earth System Sciences, 18, 2735‒2772. doi:10.5194/hess-18-2735-2014
  • Hanel, M., et al., 2012. A multi-model assessment of climate change impact on hydrological regime in the Czech Republic. Journal of Hydrology and Hydromechanics, 60 (3), 152–161. doi:10.2478/v10098-012-0013-4
  • Hansen, G. and Cramer, W., 2015. Global distribution of observed climate change impacts. Nature Climate Change, 5, 182‒185. doi:10.1038/nclimate2529
  • Hanzer, F., et al., 2018. Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach. Hydrology and Earth System Sciences, 22, 1593–1614. doi:10.5194/hess-22-1593-2018
  • Hawkins, E. and Sutton, R., 2011. The potential to narrow uncertainty in regional climate predictions. Climate Dynamics, 37, 407–418. doi:10.1007/s00382-010-0810-6
  • Hejazi, M.I. and Moglen, G.E., 2008. The effect of climate and land use change on flow duration in Maryland Piedmont region. Hydrological Processes, 22, 4710‒4722. doi:10.1002/hyp.7080
  • Hirabayashi, Y., et al., 2013. Global flood risk under climate change. Nature Climate Change, 3, 816–821. doi:10.1038/nclimate1911
  • Holtslag, A.A.M., De Bruijn, E.I.F., and Pan, H.L., 1990. A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review, 118 (8), 1561–1575. doi:10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
  • Hostetler, S.W., Bates, G.T., and Giorgi, F., 1993. Interactive nesting of a lake thermal model within a regional climate model for climate change studies. Geophysical Research, 98, 5045–5057. doi:10.1029/92JD02843
  • Huang, S., et al., 2013. Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Climatic Change, 113 (3‒4), 631‒663. doi:10.1007/s10584-012-0586-2
  • Hutchins, M.G., et al., 2016. Projections of future deterioration in UK river quality are hampered by climatic uncertainty under extreme conditions. Hydrological Sciences Journal, 61, 2818‒2833. doi:10.1080/02626667.2016.1177186
  • IPCC (Intergovernmental Panel on Climate Change), 2012. In: C.B. Field, et al., eds. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge, UK and New York, NY: Cambridge University Press.
  • Jacob, D. and Podzun, R., 1997. Sensitivity studies with the regional climate model REMO. Meteorology and Atmospheric Physics, 63, 119–129. doi:10.1007/BF01025368
  • Joseph, J., et al., 2018. Hydrologic impacts of climate change: comparisons between hydrological parameter uncertainty and climate model uncertainty. Journal of Hydrology, 566, 1–22. doi:10.1016/j.jhydrol.2018.08.080
  • Karlsson, I.B., et al., 2016. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology, 535, 301‒317. doi:10.1016/j.jhydrol.2016.01.069
  • Kay, A.L. and Jones, R.G., 2012. Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency. Climatic Change, 114, 211–230. doi:10.1007/s10584-011-0395-z
  • Kiehl, J.T., et al., 1996. Description of the NCAR community climate model (CCM3). Tech. Rep. NCAR/TN-420 + STR. Boulder: NCAR.
  • Kis, A., et al., 2017b. Application of RCM results to hydrological analysis. Idojárás – Quarterly Journal of the Hungarian Meteorological Service, 121 (4), 437–452.
  • Kis, A., Pongrácz, R., and Bartholy, J., 2017a. Multi-model analysis of regional dry and wet conditions for the Carpathian Region. International Journal of Climatology, 37, 4543–4560. doi:10.1002/joc.5104
  • Kohnová, S., et al., 2019. Future impacts of land use and climate change on extreme runoff values in selected catchments of Slovakia. Meteorology Hydrology and Water Management, 7 (1), 47‒55. doi:10.26491/mhwm/97254
  • Kolmogorov, A.N., 1933. Sulla Determinazione Empirica di Una Legge di Distribuzione. Giornale dell’Istituto Italiano degli Attuari, 4, 83‒91.
  • Köplin, N., et al., 2014. Seasonality and magnitude of floods in Switzerland under future climate change. Hydrological Processes, 28 (4), 2567‒2578. doi:10.1002/hyp.9757
  • Kotlarski, S., et al., 2014. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development, 7, 1297–1333. doi:10.5194/gmd-7-1297-2014
  • Kour, R., Patel, N., and Krishna, A.P., 2016. Climate and hydrological models to assess the impact of climate change on hydrological regime: a review. Arabian Journal of Geosciences, 9 (544), 31p. doi:10.1007/s12517-016-2561-0
  • Kundewicz, Z.W., et al., 2013b. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59:1, 1‒28. doi:10.1080/02626667.2013.857411
  • Kundewicz, Z.W., et al., 2016. Differences in flood hazard projection sin Europe – their causes and consequences for decision making. Hydrological Sciences Journal, 62 (1), 1‒14. doi:10.1080/02626667.2016.1241398
  • Kundzewicz, Z.W., et al., 2019. Flood risk in a range of spatial perspectives – from global to local scales. Natural Hazards and Earth System Sciences, 19, 1319‒1328. doi:10.5194/nhess-19-1319-2019
  • Kundzewicz, Z.W., Pińskwar, I., and Brakenridge, G.R., 2013a. Large floods in Europe, 1985–2009. Hydrological Sciences Journal, 58 (1), 1‒7. doi:10.1080/02626667.2012.745082
  • Laurent, B., et al., 2008. Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. Journal of Geophysical Research, 113, d14218. doi:10.1029/2007JD009484
  • Lehner, B., et al., 2006. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change, 75, 273–299. doi:10.1007/s10584-006-6338-4
  • Li, L., et al., 2015. Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model. Journal of Hydrology, 528, 1–16. doi:10.1016/j.jhydrol.2015.05.028
  • Lobanova, A., et al., 2018. Hydrological impacts of moderate and high-end climate change across European river basins. Journal of Hydrology: Regional Studies, 18, 15–30. doi:10.1016/j.ejrh.2018.05.003
  • Madsen, H., et al., 2014. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology, 519, 3634‒3650. doi:10.1016/j.jhydrol.2014.11.003
  • Maraun, D., et al., 2010. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48, RG3003. doi:10.1029/2009RG000314
  • Maraun, D., 2016. Bias correcting climate change simulations – a critical review. Current Climate Change Reports, 2 (4), 211‒220. doi:10.1007/s40641-016-0050-x
  • Marhaento, H., Booij, M.J., and Hoekstra, A.Y., 2018. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal, 63 (9), 1368‒1385. doi:10.1080/02626667.2018.1511054
  • Martinec, J., 1960. The degree-day factor for snowmelt run-off forecasting. In: IUGG General Assembly of Helsinki, IAHS Commission of Surface Waters, IAHS Publ. No. 51, 468–477.
  • Martinec, J. and Rango, A., 1986. Parameter values for snowmelt run-off modelling. Journal of Hydrology, 84, 197–219. doi:10.1016/0022-1694(86)90123-X
  • Meresa, H.K., Romanowicz, R.J., and Napiorkowski, J.J., 2017. Understanding changes and trends in projected hydroclimatic indices in selected Norewegian and Polish catchments. Acta Geophysica, 65 (4), 829‒848. doi:10.1007/s11600-017-0062-5
  • Muerth, M., et al., 2012. Evaluation of different sources of uncertainty in climate change impact research using a hydro-climatic model ensemble. In: R. Seppelt, et al., eds. 2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany. Available from: http://www.iemss.org/society/index.php/iemss-2012-proceedings.
  • Muerth, M.J., et al., 2013. On the need for bias correction in regional climate scenarios to assess climate change impacts on river run-off. Hydrology and Earth System Sciences, 17, 1189–1204. doi:10.5194/hess-17-1189-2013
  • Nerantzaki, S.D., et al., 2019. Climate change impact on the hydrological budget of a large Mediterranean island. Hydrological Sciences Journal, 64 (10), 1190‒1203. doi:10.1080/02626667.2019.1630741
  • Olsson, J., Yang, W., and Bosshard, T., 2013. Climate model precipitation in hydrological impact studies: limitations and possibilities. Journal of Water Management and Research, 69, 221–230.
  • Osuch, M., et al., 2017. Projected changes in flood indices in selected catchments in Poland in the 21st century. Stochastic Environmental Research and Risk Assessment, 31, 2435–2457. doi:10.1007/s00477-016-1296-5
  • Panagos, P., et al., 2012. European soil data centre: response to European policy support and public data requirements. Land Use Policy, 29 (2), 329‒338. doi:10.1016/j.landusepol.2011.07.003
  • Pieczka, I., et al., 2017. Sensitivity analysis of different parameterization schemes using RegCM4.3 for the Carpathian Region. Theoretical and Applied Climatology, 130 (3‒4), 1175‒1188. doi:10.1007/s00704-016-1941-4
  • Pieczka, I., et al., 2018. Future temperature projections for Hungary based on RegCM4.3 simulations using new representative concentration pathways scenarios. International Journal of Global Warming, 15 (3), 277‒292. doi:10.1504/IJGW.2018.093121
  • Pieczka, I., et al., 2019. Validation of RegCM regional and HadGEM global climate models using mean and extreme climatic variables. Idojárás – Quarterly Journal of the Hungarian Meteorological Service, 123 (4), 409–433. doi:10.28974/idojaras.2019.4.1
  • Piras, M., et al., 2014. Quantification of hydrologic impacts of climate change in a Mediterranean basin in Sardinia, Italy, through high-resolution simulations. Hydrology and Earth System Sciences, 18, 5201–5217. doi:10.5194/hess-18-5201-2014
  • Pistocchi, 2015. Leaf Area Index (MAPPE model). European Commission, Joint Research Centre (JRC) [Dataset] PID. Available from: http://data.europa.eu/89h/jrc-mappe-europe-setup-d-18-lai.
  • Prudhomme, C., et al., 2010. Scenario-neutral approach to climate change impact studies: application to flood risk. Journal of Hydrology, 390 (3‒4), 198‒209. doi:10.1016/j.jhydrol.2010.06.043
  • Radvánszky, B. and Jacob, D., 2008. A Tisza vízgyűjtőterületének várható klímaváltozása és annak hatása a Tisza vízhozamára regionális klímamodell (REMO) és a lefolyási modell (HD) alkalmazásával. Hidrológiai Közlöny, 88 (3), 33–42.
  • Rojas, R., et al., 2011. Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrology and Earth System Sciences, 15, 2599‒2620. doi:10.5194/hess-15-2599-2011
  • Rojas, R., et al., 2012. Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. Journal of Geophysical Research, 117, D17109. doi:10.1029/2012JD017461
  • Rojas, R., Feyen, R., and Watkiss, P., 2013. Climate change and river floods in the European Union: socio-economic consequences and the costs and benefits of adaptation. Global Environmental Change, 23 (6), 1737‒1751. doi:10.1016/j.gloenvcha.2013.08.006
  • Rosenzweig, C. and Parry, M.L., 1994. Potential impact of climate change on world food supply. Nature, 367, 133‒138. doi:10.1038/367133a0
  • Roudier, P., et al., 2016. Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Climatic Change, 135 (2), 341‒355. doi:10.1007/s10584-015-1570-4
  • Smith, A., et al., 2014. Comparing ensemble projections of flooding against flood estimation by continuous simulation. Journal of Hydrology, 511, 205–219. doi:10.1016/j.jhydrol.2014.01.045
  • Sordo-Ward, Á., et al., 2016. Impact of hydrological uncertainty on water management decisions. Water Resources Management, 30, 5535–5551. doi:10.1007/s11269-016-1505-5
  • Strasser, U., et al., 2019. Storylines of combined future land use and climate scenarios and their hydrological impacts in an Alpine catchment (Brixental/Austria). Science of the Total Environment, 657, 746–763. doi:10.1016/j.scitotenv.2018.12.077
  • Sundqvist, H., Berge, E., and Kristjansson, J.E., 1989. The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. Journal of Climate, 11, 2698–2712.
  • Szabó, J.A., 2007. Decision supporting hydrological model for river basin flood control. In: R.J. Peckham and G. Jordan, eds. Digital terrain modelling: development and applications in a policy support environment. Berlin: Springer-Verlag, 145–182.
  • Szalai, S., et al., 2013. Climate of the greater Carpathian Region. Final 740 Technical Report. Available from: http://www.carpatclim-eu.org.
  • Szentimrey, T. and Bihari, Z., 2006. MISH (meteorological interpolation based on surface homogenized data basis). In: O.E. Tveito, et al., eds. COST action 719 final report, the use of GIS in climatology and meteorology, 54–56.
  • Szentimrey, T., 2007. Manual of homogenization software MASHv3.02. Budapest: Hungarian Meteorological Service, 65.
  • Szentiványi, Á., 2015. Flood control tasks. Budapest, General Directorate of Water Management. Available from: http://www.ovf.hu/en/arvizvedelem-1-en.
  • Teutschbein, C., 2013. Hydrological modeling for climate change impact assessment. PhD dissertation. Department of Physical Geography and Quaternary Geology, Stockholm University, 44.
  • Teutschbein, C. and Seibert, J., 2010. Regional climate models for hydrological impact studies at the catchment scale: a review of recent modelling strategies. Geography Compass, 4/7, 834–860. doi:10.1111/j.1749-8198.2010.00357.x
  • Teutschbein, C. and Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Journal of Hydrology, 456–457, 12–29. doi:10.1016/j.jhydrol.2012.05.052
  • Torma, C.Z., 2019. Detailed validation of EURO-CORDEX and Med-CORDEX regional climate model ensembles over the Carpathian Region. Időjárás, 123 (2), 217‒240. doi:10.28974/idojaras.2019.2.6
  • Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8 (2), 127–150. doi:10.1016/0034-4257(79)90013-0
  • van Genuchten, M.T., Leij, F.J., and Wu, L., eds., 1999. Characterization and measurement of the hydraulic properties of unsaturated porous media. Parts 1 and 2. Riverside, CA: University of California.
  • van Vilet, M.T.H., et al., 2016. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environmental Change, 40, 156–170. doi:10.1016/j.gloenvcha.2016.07.007
  • van Vuuren, D.P., et al., 2011. The representative concentration pathways: an overview. Climatic Change, 109, 5–31. doi:10.1007/s10584-011-0148-z
  • Varga-Haszonits, Z., 1969. Determination of the water content and of the evaporation of bare soil. Időjárás, 73 (6), 328–334.
  • Vari, A., et al., 2003. Stakeholder views on flood risk management in hungary's upper tisza basin. Risk Analysis, 23 (3), 585–600. doi:10.1111/1539-6924.00339
  • Walter, H. and Lieth, H., 1960. Klimadiagramm-Weltatlas. Jena: Fischer, 130.
  • Wang, S., et al., 2017. Towards robust quantification and reduction of uncertainty in hydrologic predictions: integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion. Journal of Hydrology, 548, 484–497. doi:10.1016/j.jhydrol.2017.03.027
  • Wang, S. and Wang, Y., 2019. Improving probabilistic hydroclimatic projections through high- resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations. Climate Dynamics, 53, 1613–1636. doi:10.1007/s00382-019-04702-7
  • Wang, Y., et al., 2019. Assessing flood risk in Baiyangdian Lake aera in a changing climate using an integrated hydrological-hydrodynamic modelling. Hydrological Sciences Journal. doi:10.1080/02626667.2019.1657577
  • Wheeler, T. and von Braun, J., 2013. Climate change impacts on global food security. Science, 341 (6145), 508–513. doi:10.1126/science.1239402
  • Wiebe, K., et al., 2015. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letter, 10 (8), 085010. doi:10.1088/1748-9326/10/8/085010
  • Wiréhn, L., 2018. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy, 77, 63–74. doi:10.1016/j.landusepol.2018.04.059
  • Wu, X., et al., 2016. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environment International, 86, 14–23. doi:10.1016/j.envint.2015.09.007
  • Zeng, X., 2005. A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophysical Research Letters, 32, l14605. doi:10.1029/2005GL023030
  • Zeng, X., Zhao, M., and Dickinson, R.E., 1998. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using toga coare and tao data. Journal of Climate, 11, 2628–2644. doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.