569
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Spatial and temporal characteristics of soil erosion and identification of source contributors of sediments in the tropical rainforest region of Borneo

ORCID Icon & ORCID Icon
Pages 2797-2815 | Received 02 Jan 2019, Accepted 08 Sep 2020, Published online: 20 Nov 2020

References

  • Achard, F., et al., 2002. Determination of deforestation rates of the world’s humid tropical forests. Science, 297 (5583), 999–1002. doi:10.1126/science.1070656
  • Alexakis, D.D., Hadjimitsis, D.G., and Agapiou, A., 2013. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of Yialias in Cyprus. Atmospheric Research, 131, 108–124. doi:10.1016/j.atmosres.2013.02.013
  • Arnoldus, H.M.J., 1980. An Approximation of the rainfall factor in the universal soil loss equation. In: M. De Boodt and D. Gabriels, D, eds. Assessment of erosion. New York: John Wiley and Sons, 127–132.
  • Berkun, M., 2010. Hydroelectric potential and environmental effects of multidam hydropower projects in Turkey. Energy for Sustainable Development, 14 (4), 320–329. doi:10.1016/j.esd.2010.09.003
  • Besler, H., 1987. Slope properties, slope processes and soil erosion risk in the tropical rain forest of Kalimantan Timur (Indonesian Borneo). Earth Surface Processes and Landforms, 12 (2), 195–204. doi:10.1002/esp.3290120209
  • Borrelli, P., et al., 2014. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. Catena, 114, 45–58. doi:10.1016/j.catena.2013.10.007
  • Borrelli, P., et al., 2018. Object‐oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land Degradation & Development, 29 (4), 1270–1281. doi:10.1002/ldr.2898
  • Bracken, L.J., et al., 2015. Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40 (2), 177–188. doi:10.1002/esp.3635
  • Carroll, C., Merton, L., and Burger, P., 2000. Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Soil Research, 38 (2), 313–328. doi:10.1071/SR99052
  • Clarke, M.A. and Walsh, R.P.D., 2006. Long-term erosion and surface roughness change of rain-forest terrain following selective logging, Danum Valley, Sabah, Malaysia. Catena, 68 (2–3), 109–123. doi:10.1016/j.catena.2006.04.002
  • Curran, L.M., et al., 2004. Lowland forest loss in protected areas of Indonesian Borneo. Science, 303 (5660), 1000–1003. doi:10.1126/science.1091714
  • Dabral, P.P., Baithuri, N., and Pandey, A., 2008. Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management, 22 (12), 1783–1798. doi:10.1007/s11269-008-9253-9
  • de Moraes, M.V.A., et al., 2016. Monitoring bank erosion in hydroelectric reservoirs with mobile laser scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (12), 5524–5532. doi:10.1109/JSTARS.2016.2574704
  • de Vente, J., et al., 2007. The sediment delivery problem revisited. Progress in Physical Geography, 31 (2), 155–178. doi:10.1177/0309133307076485
  • de Vente, J. and Poesen, J., 2005. Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-science Reviews, 71 (1–2), 95–125. doi:10.1016/j.earscirev.2005.02.002
  • Department of Agriculture (DoA), 1982a. The soils of northern interior Sarawak (East Malaysia). Malaysia: Department of Agriculture, Sarawak.
  • Department of Agriculture (DoA), 1982b. Soil classification in Sarawak. Technical paper no.6. Malaysia: Department of Agriculture, Sarawak.
  • Department of Mineral and Geoscience Malaysia (DMGM), 2013. Geological map of Sarawak (1:750,000). Third edition. Malaysia: Directorate of National Mapping.
  • Díaz, S., et al., 2006. Biodiversity loss threatens human well-being. PLoS Biology, 4 (8), e277. doi:10.1371/journal.pbio.0040277
  • Didoné, E.J., Minella, J.P.G., and Evrard, O., 2017. Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of Southern Brazil. Soil and Tillage Research, 174, 24–33. doi:10.1016/j.still.2017.05.011
  • Didoné, E.J., Minella, J.P.G., and Merten, G.H., 2015. Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation. Journal of Soils and Sediments, 15 (11), 2334–2346. doi:10.1007/s11368-015-1160-0
  • Douglas, I., 1996. The impact of land-use changes, especially logging, shifting cultivation, mining and urbanization on sediment yields in humid tropical Southeast Asia: a review with special reference to Borneo. IAHS Publications-Series of Proceedings and Reports-International Association of Hydrological Sciences, 236, 463–472.
  • Durigon, V.L., et al., 2014. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35 (2), 441–453. doi:10.1080/01431161.2013.871081
  • Fernández, C. and Vega, J.A., 2016. Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma, 273, 64–72. doi:10.1016/j.geoderma.2016.03.016
  • Fu, B.J., et al., 2005. Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. Land Degradation & Development, 16 (1), 73–85. doi:10.1002/ldr.646
  • García-Ruiz, J.M., et al., 2015. A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160–173. doi:10.1016/j.geomorph.2015.03.008
  • Gaveau, D.L.A., et al., 2014. Four decades of forest persistence, clearance and logging on Borneo. PLoS ONE, 9 (7), e101654. doi:10.1371/journal.pone.0101654
  • Greer, T., Bidin, K., and Douglas, I., 1994. Tropical rainforest disturbance and suspended sediment-discharge rating variation. In: L.J. Olive and J.A. Kesby, eds. Variability in stream erosion and sediment tramport: poster contributions (Proc.CanbertdLSymp., December l994). Canberra: Australian Defence Force Academy, Dept. of Geography and Oceanography Special Publ. 5, 34–38.
  • Gregersen, B., et al., 2003 January–March. Land use and soil erosion in Tikolod, Sabah, Malaysia. ASEAN Review of Biodiversity and Environmental Conservation (ARBEC), 1–11.
  • Gupta, A., 1996. Erosion and sediment yield in Southeast Asia: a regional perspective. IAHS Publications-Series of Proceedings and Reports-International Association of Hydrological Sciences, 236, 215–222.
  • Gusta Gunawan, G., et al., 2013. Evaluation of erosion based on GIS and remote sensing for supporting integrated water resources conservation management. (Case study: Manjunto Watershed, Bengkulu Province-Indonesia). International Journal of Technology, 4 (2), 147–156. doi:10.14716/ijtech.v4i2.110
  • Halim, R., et al., 2007. Integration of biophysical and socio‐economic factors to assess soil erosion hazard in the Upper Kaligarang Watershed, Indonesia. Land Degradation & Development, 18 (4), 453–469. doi:10.1002/ldr.774
  • Ham, H.T., 2008. Soil erosion risk modelling within upland landscapes using remotely sensed data and the RUSLE model (Acase study in Huong Tra district, Thua Thien Hue province, Vietnam). In: International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, 4–6 December. Hanoi, Vietnam.
  • Jain, M.K. and Kothyari, U.C., 2000. Estimation of soil erosion and sediment yield using GIS. Hydrological Sciences Journal, 45 (5), 771–786. doi:10.1080/02626660009492376
  • Kamaludin, H., et al., 2013. Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology and Earth System Science Discussion, 10 (4), 4567–4596. doi:10.5194/hessd-10-4567-2013
  • Karaburun, A., 2010. Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Journal of Applied Sciences, 3 (1), 77–85.
  • Kasran, B. and Nik, A.R., 1994. Suspended sediment yield resulting from selective logging practices in a small watershed in Peninsular Malaysia. Journal of Tropical Forest Science, 7 (2), 286–295.
  • Kouli, M., Soupios, P., and Vallianatos, F., 2009. Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57 (3), 483–497. doi:10.1007/s00254-008-1318-9
  • Kusumandari, A. and Mitchell, B., 1997. Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. Journal of Soil and Water Conservation, 52 (5), 376–380.
  • Lal, R., 1987. Tropical ecology and physical edaphology. Chichester: Wiley.
  • Lal, R., 1990. Soil erosion and land degradation: the global risks. In: Advances in soil science. vol 11. New York, NY: Springer, 129–172.
  • Lu, D., et al., 2004. Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degradation & Development, 15 (5), 499–512. doi:10.1002/ldr.634
  • Malaysian Meteorological Department, 2017. Malaysia’s Climate: seasonal rainfall variation in Sabah and Sarawak. http://www.met.gov.my [Accessed 12 July 2017].
  • Martı́nez-Casasnovas, J.A. and Sánchez-Bosch, I., 2000. Impact assessment of changes in land use/conservation practices on soil erosion in the Penedès–Anoia vineyard region (NE Spain). Soil and Tillage Research, 57 (1–2), 101–106. doi:10.1016/S0167-1987(00)00142-2
  • Mhangara, P., Kakembo, V., and Lim, K.J., 2012. Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and remote sensing. Environmental Earth Sciences, 65 (7), 2087–2102. doi:10.1007/s12665-011-1190-x
  • Midmore, D.J., Jansen, H.G., and Dumsday, R.G., 1996. Soil erosion and environmental impact of vegetable production in the Cameron Highlands, Malaysia. Agriculture, Ecosystems & Environment, 60 (1), 29–46. doi:10.1016/S0167-8809(96)01065-1
  • Miettinen, J., Shi, C., and Liew, S.C., 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology, 17 (7), 2261–2270. doi:10.1111/j.1365-2486.2011.02398.x
  • Millward, A.A. and Mersey, J.E., 1999. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38 (2), 109–129. doi:10.1016/S0341-8162(99)00067-3
  • Mir, S.I., et al., 2010. Soil loss assessment in the Tasik Chini catchment, Pahang, Malaysia. Geological Society of Malaysia Bulletin, 56, 1–7. doi:10.7186/bgsm56201001
  • Mojaddadi Rizeei, H., et al., 2016. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International, 31 (10), 1158–1177. doi:10.1080/10106049.2015.1120354
  • Moore, I. and Burch, G. 1986. Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resources Research, 22 (8), 1350–1360. doi:10.1029/WR022i008p01350
  • Moore, I.D., Grayson, R.B., and Ladson, A.R., 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5 (1), 3–30. doi:10.1002/hyp.3360050103
  • Moore, I.D. and Wilson, J.P., 1992. Length-slope factors for the revised universal soil loss equation: simplified method of estimation. Journal of Soil and Water Conservation, 47, 423–428.
  • Morgan, R.P.C., 1974. Estimating regional variations in soil erosion hazard in peninsular Malaysia. Malaysian Nature Journal, 28, 94–106.
  • Nainar, A., et al., 2017. Effects of different land-use on suspended sediment dynamics in Sabah (Malaysian Borneo)–a view at the event and annual timescales. Hydrological Research Letters, 11 (1), 79–84. doi:10.3178/hrl.11.79
  • Nontananandh, S. and Changnoi, B., 2012. Internet GIS, based on USLE modeling, for assessment of soil erosion in Songkhram Watershed, Northeastern of Thailand. Agriculture and Natural Resources, 46, 272–282.
  • Noori, H., Siadatmousavi, S.M., and Mojaradi, B., 2016. Assessment of sediment yield using RS and GIS at two sub-basins of Dez Watershed, Iran. International Soil and Water Conservation Research, 4 (3), 199–206. doi:10.1016/j.iswcr.2016.06.001
  • Norsahida, B.S., 2008. Determination of soil erosion parameters for Malaysian conditions using remote sensing and geographic information system approach. Unpublished Master’s Thesis. UniversitiTeknologi Malaysia, 179.
  • Panagos, P., et al., 2014. Assessing soil erosion in Europe based on data collected through a European Network. Soil Science and Plant Nutrition, 60 (1), 15–29. doi:10.1080/00380768.2013.835701
  • Panagos, P., et al., 2015. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38–50. doi:10.1016/j.landusepol.2015.05.021
  • Panagos, P., et al., 2018. Cost of agricultural productivity loss due to soil erosion in the European Union: from direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development, 29 (3), 471–484. doi:10.1002/ldr.2879
  • Pham, T.G., Degener, J., and Kappas, M., 2018. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, 6 (2), 99–110. doi:10.1016/j.iswcr.2018.01.001
  • Pimentel, D., 2006. Soil erosion: a food and environmental threat. Environment, Development and Sustainability, 8 (1), 119–137.
  • Pradhan, B., et al., 2012. Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia. Environmental Monitoring and Assessment, 184 (2), 715–727. doi:10.1007/s10661-011-1996-8
  • Prasannakumar, V., et al., 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3 (2), 209–215. doi:10.1016/j.gsf.2011.11.003
  • Ramli, R. and Bahri, I.S.S., 2011. Determination of soil erodiblity, K factor for Sungai Kurau soil series. ESTEEM Academic Journal, 7 (1), 55–65.
  • Renard, K.G., et al., 1991. RUSLE: revised universal soil loss equation. Journal of Soil and Water Conservation, 46 (1), 30–33.
  • Renard, K.G., et al., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703. Washington, DC: USDA.
  • Rijsdijk, A., 2005. Tropical volcanic watershed. Sediment Budgets, 292, 16.
  • Roslee, R., 2017. GIS application for comprehensive spatial soil erosion analysis with MUSLE model in Sandakan town area, Sabah, Malaysia. Geological Behavior, 1 (1), 01–05.
  • Russo, A., 2015. Applying the revised universal soil loss equation model to land use planning for erosion risk in Brunei Darussalam. Australian Planner, 52 (2), 1–17. doi:10.1080/07293682.2014.957332
  • Saidi, A., et al., 2010. Soil erosion characterization in an agricultural watershed in West Sumatra, Indonesia. Tropics, 19 (1), 29–42. doi:10.3759/tropics.19.29
  • Schmidt, S., Alewell, C., and Meusburger, K., 2018. Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sensing of Environment, 211, 89–104. doi:10.1016/j.rse.2018.04.008
  • Sidle, R.C., et al., 2006. Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management, 224 (1), 199–225. doi:10.1016/j.foreco.2005.12.019
  • Singh, G., Rambabu, and Subhash, C., 1981. Soil loss prediction research in India. Dehradun: Bull. No. T-12/D-9, CSWCR & TI.
  • Southgate, D. and Macke, R., 1989. The downstream benefits of soil conservation in third world hydroelectric watersheds. Land Economics, 65 (1), 38–48. doi:10.2307/3146262
  • Straub, M.K., Mohrig, D., and Pirmez, C., 2011. Architecture of an aggradational tributary submarine channel network on the continental slope offshore Brunei Darussalam. In: Application of seismic geomorphology principles to continental slope and base-of-slope systems: case studies from seafloor and near-seafloor analogues. Tulsa, Oklahoma, USA: SEPM Special Publication, 13–30.
  • Swarnkar, S., et al., 2018. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India. Hydrology and Earth System Sciences, 22 (4), 2471–2485. doi:10.5194/hess-22-2471-2018
  • Tamene, L., et al., 2017. Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia. Geomorphology, 292, 153–163. doi:10.1016/j.geomorph.2017.04.038
  • Teh, S.H., 2011. Soil erosion modelling using RUSLE and GIS on Cameron highlands, Malaysia for hydropower development. Unpublished Master’s Thesis. University of Iceland, 74
  • Terranova, O., et al., 2009. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology, 112 (3–4), 228–245. doi:10.1016/j.geomorph.2009.06.009
  • Tew, K.H., 1999. Production of Malaysian soil erodibility nomograph in relation to soil erosion issues. In: VT soil erosion research and consultancy. Malaysia: Subang Jaya, Malaysia: Tew Kia Hui, 27. ISBN:983-40126-1-6
  • Thomas, J., Joseph, S., and Thrivikramji, K.P., 2018. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9 (3), 893–906. doi:10.1016/j.gsf.2017.05.011
  • Tran, T.P., et al., 2014. Modelingsoilerosion within small mountainous watershed in central Vietnam using GIS and SWAT. Journal of Resources and Environment, 4 (3), 139–147.
  • Van der Knijff, J.M., Jones, R.J.A., and Montanarella, L., 1999. Soil erosion risk assessment in Italy. European Commission, Directorate General, Joint Research Centre, Space Applications Institute European Soil Bureau. Luxembourg: Office for Official Publications of the European Communities.
  • Van der Knijff, J.M., Jones, R.J.A., and Montanarella, L., 2000. Soil erosion risk assessment in Europe. European Commission, European Soil Bureau. Luxembourg: Office for Official Publications of the European Communities.
  • van Zelm, R., et al., 2018. Spatially explicit life cycle impact assessment for soil erosion from global crop production. Ecosystem Services, 30, 220–227. doi:10.1016/j.ecoser.2017.08.015
  • Vanwalleghem, T., et al., 2017. Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17, 13–29. doi:10.1016/j.ancene.2017.01.002
  • Vijith, H. and Dodge-Wan, D., 2018. Spatio-temporal changes in rate of soil loss and erosion vulnerability of selected region in the tropical forests of Borneo during last three decades. Earth Science Informatics, 11 (2), 171–181. doi:10.1007/s12145-017-0321-7
  • Vijith, H. and Dodge-Wan, D., 2019. Spatial and statistical trend characteristics of rainfall erosivity (R) in upper catchment of Baram River, Borneo. Environmental Monitoring and Assessment, 191 (8), 494. doi:10.1007/s10661-019-7604-z
  • Vijith, H., Hurmain, A., and Dodge-Wan, D., 2018b. Impacts of land use changes and land cover alteration on soil erosion rates and vulnerability of tropical mountain ranges in Borneo. Remote Sensing Applications: Society and Environment, 12, 57–69. doi:10.1016/j.rsase.2018.09.003
  • Vijith, H., Seling, L.W., and Dodge-Wan, D., 2017. Effect of cover management factor in quantification of soil loss: case study of Sungai Akah subwatershed, Baram River basin Sarawak, Malaysia. Geocarto International, 33 (5), 505–521. doi:10.1080/10106049.2016.1273398
  • Vijith, H., Seling, L.W., and Dodge-Wan, D., 2018a. Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo. Environment, Development and Sustainability, 20 (3), 1365–1384. doi:10.1007/s10668-017-9946-4
  • Walling, D.E. and Webb, B., eds., 1996. Erosion and sediment yield: global and regional perspectives. In: Proceedings of an International Symposium Held at Exeter, UK, from 15 to 19 July 1996 (No. 236). IAHS.
  • Wischmeier, W. and Smith, D., 1978. Predicting rainfall erosion losses—A guide to conservation planning. Washington, D.C., USA: U.S. Department of Agriculture Handbook, No. 537.
  • Wynants, M., et al., 2018. Pinpointing areas of increased soil erosion risk following land cover change in the Lake Manyara catchment, Tanzania. International Journal of Applied Earth Observation and Geoinformation, 71, 1–8. doi:10.1016/j.jag.2018.05.008
  • Zeng, C., et al., 2017. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8 (4), 721. doi:10.5194/se-8-721-2017
  • Zhang, X., et al., 2010. Effects of land use change on surface runoff and sediment yield at different watershed scales on the Loess Plateau. International Journal of Sediment Research, 25 (3), 283–293. doi:10.1016/S1001-6279(10)60045-5
  • Zhongming, W., et al., 2010. Stratified vegetation cover index: a new way to assess vegetation impact on soil erosion. Catena, 83 (1), 87–93. doi:10.1016/j.catena.2010.07.006
  • Zhou, P., et al., 2008. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75 (3), 319–325. doi:10.1016/j.catena.2008.07.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.