1,244
Views
46
CrossRef citations to date
0
Altmetric
Research Article

New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2816-2837 | Received 23 Dec 2019, Accepted 20 Jul 2020, Published online: 20 Nov 2020

References

  • Abedini, M., et al., 2019. A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environmental Earth Sciences, 78 (18), 560. doi:10.1007/s12665-019-8562-z
  • Adhikari, P., et al., 2010. A digitized global flood inventory (1998–2008): compilation and preliminary results. Natural Hazards, 55 (2), 405–422. doi:10.1007/s11069-010-9537-2
  • Ahmadlou, M., et al., 2019. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto International, 34 (11), 1252–1272.
  • Alfieri, L., et al., 2018. Multi-model projections of river flood risk in Europe under global warming. Climate, 6 (1), 6. doi:10.3390/cli6010006
  • Ali, S.A., et al., 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multicriteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecological Indicators, 117, 106620. doi:10.1016/j.ecolind.2020.106620
  • Ameri, A.A., Pourghasemi, H.R., and Cerda, A., 2018. Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: a comparison among TOPSIS, VIKOR, SAW, and CF multicriteria decision making models. Science of the Total Environment, 613, 1385–1400. doi:10.1016/j.scitotenv.2017.09.210
  • Avand, M., et al., 2020. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. International Journal of Digital Earth, 1–22. doi:10.1080/17538947.2020.1718785
  • Azareh, A., et al., 2019. Incorporating multicriteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto International, 1–21. doi:10.1080/10106049.2019.1695958
  • Below, R. and Wallemacq, P., 2018. Natural disasters 2017. Brussels: Centre for Research on the Epidemiology of Disasters (CRED).
  • Bodoque, J.M., et al., 2019. Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: a pre-post survey design. Journal of Hydrology, 568, 769–779. doi:10.1016/j.jhydrol.2018.11.007
  • Bolt, B.A., et al., 2013. Geological hazards: earthquakes-tsunamis-volcanoes-avalanches-landslides-floods. Springer Science & Business Media, Springer-Verlag Berlin Heidelberg.
  • Brunner, G.W., 1995. HEC-RAS river analysis system. Hydraulic reference manual. Version 1.0. Davis, CA: Hydrologic Engineering Center.
  • Bui, D.T., et al., 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317–330. doi:10.1016/j.jhydrol.2016.06.027
  • Bui, D.T., et al., 2018. Novel hybrid evolutionary algorithms for spatial prediction of floods. Scientific Reports, 8 (1), 15364. doi:10.1038/s41598-018-33755-7
  • Bui, D.T., et al., 2019a. A new intelligence approach based on GIS-based multivariate adaptive regression splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. Journal of Hydrology, 575, 314–326. doi:10.1016/j.jhydrol.2019.05.046
  • Bui, D.T., et al., 2019b. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 668, 1038–1054. doi:10.1016/j.scitotenv.2019.02.422
  • Bui, D.T., et al., 2020. A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area. Science of the Total Environment, 701, 134413. doi:10.1016/j.scitotenv.2019.134413
  • Celikyilmaz, A. and Turksen, I.B., 2009. Modeling uncertainty with fuzzy logic. Studies in Fuzziness and Soft Computing, 240, 149–215.
  • Chapi, K., et al., 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software, 95, 229–245. doi:10.1016/j.envsoft.2017.06.012
  • Choubin, B., et al., 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. doi:10.1016/j.scitotenv.2018.10.064
  • Corsini, A., Cervi, F., and Ronchetti, F., 2009. Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111 (1–2), 79–87. doi:10.1016/j.geomorph.2008.03.015
  • Costa, V. and Fernandes, W., 2017. Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator. Journal of Hydrology, 554, 137–154. doi:10.1016/j.jhydrol.2017.09.003
  • Costache, R., 2014a. Assessing monthly average runoff depth in Sărățel river basin, Romania. Analele stiintifice ale Universitatii” Alexandru Ioan Cuza” Din Iasi-seria Geografie, 60 (1), 97–110.
  • Costache, R., 2014b. Estimating multiannual average runoff depth in the middle and upper sectors of Buzău River basin. Geographia Technica, 9 (2), 21–29.
  • Costache, R., et al., 2015. Flood vulnerability assessment in the low sector of Saratel catchment. Case study: Joseni village. Carpathian Journal of Earth and Environmental Sciences, 10 (1), 161–169.
  • Costache, R., 2019a. Flash-flood potential index mapping using weights of evidence, decision trees models and their novel hybrid integration. Stochastic Environmental Research and Risk Assessment, 33 (7), 1375–1402. doi:10.1007/s00477-019-01689-9
  • Costache, R., 2019b. Flash-flood potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models. Science of the Total Environment, 659, 1115–1134. doi:10.1016/j.scitotenv.2018.12.397
  • Costache, R., 2019c. Flood susceptibility assessment by using bivariate statistics and machine learning models-A useful tool for flood risk management. Water Resources Management, 33 (9), 3239–3256. doi:10.1007/s11269-019-02301-z
  • Costache, R., et al., 2020a. Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment, Journal of Environmental Management, 265, 110485. doi:10.1016/j.jenvman.2020.110485
  • Costache, R., et al., 2020a. Using GIS, remote sensing, and machine learning to highlight the correlation between the land-use/land-cover changes and flash-flood potential. Remote Sensing, 12 (9), 1422. doi:10.3390/rs12091422
  • Costache, R., et al., 2020b. Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment. Journal of Environmental Management, 265, 110485. doi:10.1016/j.jenvman.2020.110485
  • Costache, R., et al., 2020c. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12 (1), 106. doi:10.3390/rs12010106
  • Costache, R., et al., 2020d. Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. Journal of Hydrology, 585, 124808. doi:10.1016/j.jhydrol.2020.124808
  • Costache, R. and Bui, D.T., 2019. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: a case study at the Putna river catchment of Romania. Science of the Total Environment, 691, 1098–1118. doi:10.1016/j.scitotenv.2019.07.197
  • Costache, R. and Bui, D.T., 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Science of the Total Environment, 712, 136492. doi:10.1016/j.scitotenv.2019.136492
  • Costache, R., Fontanine, I., and Corodescu, E., 2014. Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques. Open Geosciences, 6 (3), 363–372.
  • Costache, R., Hong, H., and Pham, Q.B., 2020a. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Science of the Total Environment, 711, 134514. doi:10.1016/j.scitotenv.2019.134514
  • Costache, R., Hong, H., and Wang, Y., 2019. Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics. Catena, 183, 104179. doi:10.1016/j.catena.2019.104179
  • Costache, R., Ngo, P.T.T., and Tien Bui, D., 2020b. Novel ensembles of deep learning neural network and statistical learning for flash-flood susceptibility mapping. Water, 12 (6), 1549. doi:10.3390/w12061549
  • Costache, R. and Zaharia, L., 2017. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment–case study: Bâsca Chiojdului River catchment (Romania). Journal of Earth System Science, 126 (4), 59. doi:10.1007/s12040-017-0828-9
  • Dodangeh, E., et al., 2020. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Science of the Total Environment, 705, 135983. doi:10.1016/j.scitotenv.2019.135983
  • Dottori, F., et al., 2018. Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change, 8, 781–786. doi:10.1038/s41558-018-0257-z
  • Dumitriu, D., 2019. Relationships between sediment transport and various hydrological and hydraulic characteristics of flood events on Trotuș River (Romania).
  • El Alfy, M., 2016. Assessing the impact of arid area urbanization on flash floods using GIS, remote sensing, and HEC-HMS rainfall–runoff modeling. Hydrology Research, 47 (6), 1142–1160. doi:10.2166/nh.2016.133
  • Elkhrachy, I., 2015. Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, 18 (2), 261–278. doi:10.1016/j.ejrs.2015.06.007
  • Fortin, J.-P., et al., 2001. Distributed watershed model compatible with remote sensing and GIS data. I: description of model. Journal of Hydrologic Engineering, 6 (2), 91–99. doi:10.1061/(ASCE)1084-0699(2001)6:2(91)
  • Guha-Sapir, D., 2012. Disaster data: a balanced perspective. CredCrunch, 27, 1–2.
  • Henstra, D., et al., 2019. Flood risk management and shared responsibility: exploring Canadian public attitudes and expectations. Journal of Flood Risk Management, 12 (1), e12346. doi:10.1111/jfr3.12346
  • Hong, H., et al., 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the Total Environment, 621, 1124–1141. doi:10.1016/j.scitotenv.2017.10.114
  • Hosseini, F.S., et al., 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Science of the Total Environment, 711, 135161. doi:10.1016/j.scitotenv.2019.135161
  • Jang, J.-S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. doi:10.1109/21.256541
  • Khattak, M.S., et al., 2016. Floodplain mapping using HEC-RAS and ArcGIS: a case study of Kabul River. Arabian Journal for Science and Engineering, 41 (4), 1375–1390. doi:10.1007/s13369-015-1915-3
  • Khosravi, K., et al., 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627, 744–755. doi:10.1016/j.scitotenv.2018.01.266
  • Khosravi, K., et al., 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323. doi:10.1016/j.jhydrol.2019.03.073
  • Kourgialas, N.N. and Karatzas, G.P., 2011. Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal–Journal Des Sciences Hydrologiques, 56 (2), 212–225. doi:10.1080/02626667.2011.555836
  • Kucsicsa, G., et al., 2019. Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database. Landscape and Ecological Engineering, 15 (1), 75–90. doi:10.1007/s11355-018-0362-1
  • Kurnik, B., et al., 2017. Weather-and climate-related natural hazards in Europe. In: Climate change adaptation and disaster risk reduction in Europe. Kongens Nytorv 61050 Copenhagen K Denmark: EEA-European Environment Agency, 46–91.
  • Lázaro, J.M., et al., 2016. Flood frequency analysis (FFA) in Spanish catchments. Journal of Hydrology, 538, 598–608. doi:10.1016/j.jhydrol.2016.04.058
  • Lee, S., et al., 2017. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk, 8 (2), 1185–1203. doi:10.1080/19475705.2017.1308971
  • Linkov, I., et al., 2009. Weight-of-evidence evaluation in environmental assessment: review of qualitative and quantitative approaches. Science of the Total Environment, 407 (19), 5199–5205. doi:10.1016/j.scitotenv.2009.05.004
  • Linzer, H.-G., et al., 1998. Kinematic evolution of the Romanian Carpathians. Tectonophysics, 297 (1–4), 133–156. doi:10.1016/S0040-1951(98)00166-8
  • Luca, M. and Avram, M., 2017. Analysis of the hydroclimatic risk parameters at the high level of the Tazlăul Sărat river in 2016 year. Present Environment and Sustainable Development, 11 (2), 97–108. doi:10.1515/pesd-2017-0028
  • Maiti, S. and Tiwari, R., 2014. A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environmental Earth Sciences, 71 (7), 3147–3160. doi:10.1007/s12665-013-2702-7
  • Masseroni, D., et al., 2017. A reliable rainfall–runoff model for flood forecasting: review and application to a semi-urbanized watershed at high flood risk in Italy. Hydrology Research, 48 (3), 726–740. doi:10.2166/nh.2016.037
  • Moradi, H., Avand, M.T., and Janizadeh, S., 2019. Landslide susceptibility survey using modeling methods. In: Hamid Pourghasemi Candan Gokceoglu, eds. Spatial modeling in GIS and R for earth and environmental sciences. Elsevier, 259–275.
  • Mosavi, A., Ozturk, P., and Chau, K., 2018. Flood prediction using machine learning models: literature review. Water, 10 (11), 1536. doi:10.3390/w10111536
  • Nandi, A., et al., 2016. Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environmental Earth Sciences, 75 (6), 465. doi:10.1007/s12665-016-5323-0
  • Ngo, P.-T., et al., 2018. A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data. Sensors, 18 (11), 3704. doi:10.3390/s18113704
  • Nguyen, P.T., et al., 2016. A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. Journal of Hydrology, 541, 401–420. doi:10.1016/j.jhydrol.2015.10.047
  • Nguyen, V.-N., et al., 2017. An integration of least squares support vector machines and firefly optimization algorithm for flood susceptible modeling using GIS. Presented at the International Conference on Geo-Spatial Technologies and Earth Resources, Hanoi, Vietnam: Springer, 52–64.
  • Nhu, V.-H., et al., 2020. Gis-based gully erosion susceptibility mapping: a comparison of computational ensemble data mining models. Applied Sciences, 10 (6), 2039. doi:10.3390/app10062039
  • Oh, H.-J. and Pradhan, B., 2011. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37 (9), 1264–1276. doi:10.1016/j.cageo.2010.10.012
  • Pelling, M., et al., 2004. Reducing disaster risk: a challenge for development.. New York, NY, USA: United Nations Development Programme Bureau for Crisis Prevention and Recovery One United Nations Plaza.
  • Petrow, T. and Merz, B., 2009. Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. Journal of Hydrology, 371 (1–4), 129–141. doi:10.1016/j.jhydrol.2009.03.024
  • Pham, B.T., et al., 2020. GIS based hybrid computational approaches for flash flood susceptibility assessment. Water, 12 (3), 683. doi:10.3390/w12030683
  • Pham, Q.B., et al., 2019. Potential of hybrid data-intelligence algorithms for multi-station modelling of rainfall. Water Resources Management, 33 (15), 5067–5087. doi:10.1007/s11269-019-02408-3
  • Prăvălie, R. and Costache, R., 2013. The vulnerability of the territorial-administrative units to the hydrological phenomena of risk (flash-floods). Case study: the subcarpathian sector of Buzău catchment. Analele Universității Din Oradea–Seria Geografie, 23 (1), 91–98.
  • Prăvălie, R. and Costache, R., 2014a. The potential of water erosion in Slănic River basin. Revista de Geomorfologie, 16, 79–88.
  • Prăvălie, R. and Costache, R., 2014b. The analysis of the susceptibility of the flash-floods’ genesis in the area of the hydrographical basin of Bāsca Chiojdului river/Analiza susceptibilitatii genezei viiturilor īn aria bazinului hidrografic al rāului Bāsca Chiojdului. Forum Geografic, 13 (1), 39–49. doi:10.5775/fg.2067-4635.2014.071.i
  • Rahmati, O. and Pourghasemi, H.R., 2017. Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models. Water Resources Management, 31 (5), 1473–1487. doi:10.1007/s11269-017-1589-6
  • Regmi, N.R., Giardino, J.R., and Vitek, J.D., 2010. Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115 (1–2), 172–187. doi:10.1016/j.geomorph.2009.10.002
  • Saaty, T.L., 1980. The analytical hierarchy process, planning, priority. Resource allocation. USA: RWS publications.
  • Sarhadi, A., Soltani, S., and Modarres, R., 2012. Probabilistic flood inundation mapping of ungauged rivers: linking GIS techniques and frequency analysis. Journal of Hydrology, 458, 68–86. doi:10.1016/j.jhydrol.2012.06.039
  • Shortliffe, E.H. and Buchanan, B.G., 1975. A model of inexact reasoning in medicine. Mathematical Biosciences, 23 (3–4), 351–379. doi:10.1016/0025-5564(75)90047-4
  • Skaugen, T. and Onof, C., 2014. A rainfall‐runoff model parameterized from GIS and runoff data. Hydrological Processes, 28 (15), 4529–4542. doi:10.1002/hyp.9968
  • Skaugen, T., Peerebom, I.O., and Nilsson, A., 2015. Use of a parsimonious rainfall–run‐off model for predicting hydrological response in ungauged basins. Hydrological Processes, 29 (8), 1999–2013. doi:10.1002/hyp.10315
  • Talukdar, S., et al., 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment, 1–24. doi:10.1007/s00477-020-01862-5
  • Tanwattana, P., 2018. Systematizing community-based disaster risk management (CBDRM): case of urban flood-prone community in Thailand upstream area. International Journal of Disaster Risk Reduction, 28, 798–812. doi:10.1016/j.ijdrr.2018.02.010
  • Tehrany, M.S., et al., 2014. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72 (10), 4001–4015. doi:10.1007/s12665-014-3289-3
  • Tehrany, M.S., et al., 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125, 91–101. doi:10.1016/j.catena.2014.10.017
  • Tehrany, M.S., Pradhan, B., and Jebur, M.N., 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.
  • Teng, J., et al., 2017. Flood inundation modelling: a review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 90, 201–216. doi:10.1016/j.envsoft.2017.01.006
  • Termeh, S.V.R., et al., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451. doi:10.1016/j.scitotenv.2017.09.262
  • Tien Bui, D., et al., 2018. New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water, 10 (9), 1210. doi:10.3390/w10091210
  • Tincu, R., Lazar, G., and Lazar, I., 2018. Modified flash flood potential index in order to estimate areas with predisposition to water accumulation. Open Geosciences, 10 (1), 593–606. doi:10.1515/geo-2018-0047
  • Vinke-de Kruijf, J., Kuks, S.M., and Augustijn, D.C., 2015. Governance in support of integrated flood risk management? The case of Romania. Environmental Development, 16, 104–118. doi:10.1016/j.envdev.2015.04.003
  • Wang, Y., et al., 2019a. A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sensing, 11 (1), 62. doi:10.3390/rs11010062
  • Wang, Y., et al., 2019b. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 247, 712–729. doi:10.1016/j.jenvman.2019.06.102
  • Wod, I., 1985. Weight of evidence: a brief survey. Bayesian Statistics, 2 (2), 249–270.
  • Xu, L., et al., 2013. Research on the triggering factors analysis and relevant countermeasures of FaTing mountain landslide induced by Wenchuan earthquake. In: Earthquake-Induced Landslides. Springer Berlin Heidelberg, 355–365.
  • Yan, L., et al., 2017. Frequency analysis of nonstationary annual maximum flood series using the time‐varying two‐component mixture distributions. Hydrological Processes, 31 (1), 69–89. doi:10.1002/hyp.10965
  • Yariyan, P., et al., 2020a. Earthquake vulnerability mapping using different hybrid models. Symmetry, 12 (3), 405.
  • Yariyan, P., et al., 2020b. Improvement of best first decision trees using bagging and dagging ensembles for flood-risk mapping. Water Resources Management, 34 (9), 3037–3053. doi:10.1007/s11269-020-02603-7
  • Zaharia, L., et al., 2015. Assessment and mapping of flood potential in the Slănic catchment in Romania. Journal of Earth System Science, 124 (6), 1311–1324. doi:10.1007/s12040-015-0608-3
  • Zaharia, L., et al., 2017. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Frontiers of Earth Science, 11 (2), 229–247. doi:10.1007/s11707-017-0636-1
  • Zhao, G., et al., 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of the Total Environment, 659, 940–949. doi:10.1016/j.scitotenv.2018.12.217
  • Zhou, Q., et al., 2012. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. Journal of Hydrology, 414, 539–549. doi:10.1016/j.jhydrol.2011.11.031
  • Zuo, R., et al., 2015. Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71, 502–515. doi:10.1016/j.oregeorev.2014.09.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.