698
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of alternative representations of land use and geology on distributed hydrological modelling results: Eddleston, Scotland

ORCID Icon, , ORCID Icon &
Pages 488-502 | Received 30 Jan 2020, Accepted 05 Oct 2020, Published online: 11 Feb 2021

References

  • Ahiablame, L., et al., 2017. Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. Journal of Hydrology: Regional Studies, 14, 150–166. doi:10.1016/j.ejrh.2017.11.004
  • Alvarenga, L.A., et al., 2016. Assessment of land cover change on the hydrology of a Brazilian headwater watershed using the Distributed Hydrology-Soil-Vegetation Model. CATENA, 143, 7–17. doi:10.1016/j.catena.2016.04.001
  • Andersen, J., Refsgaard, J.C., and Jensen, K.H., 2001. Distributed hydrological modelling of the Senegal river basin - model construction and validation. Journal of Hydrology, 247 (3–4), 200–214. doi:10.1016/S0022-1694(01)00384-5
  • Andréassian, V., et al., 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall‐runoff models: a theoretical study using chimera watersheds. Water Resources Research, 40. doi:10.1029/2003WR002854
  • Archer, N.L., et al., 2013. Soil characteristics and landcover relationships on soil hydraulic conductivity at a hillslope scale: a view towards local flood management. Journal of Hydrology, 497, 208–222. doi:10.1016/j.jhydrol.2013.05.043
  • Auton, C.A., 2011. Eddleston water catchment, superficial geology, 1: 25 000. Edinburgh: British Geological Survey.
  • Bell, V.A. and Moore, R.J., 2000. The sensitivity of catchment runoff models to rainfall data at different spatial scales. Hydrology and Earth System Sciences, 4 (4), 653–667. doi:10.5194/hess-4-653-2000
  • Beven, K., 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16, 41–51. doi:10.1016/0309-1708(93)90028-E
  • Beven, K., 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320 (1), 18–36. doi:10.1016/j.jhydrol.2005.07.007
  • Bingqing, L., et al., 2015. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecological Indicators, 58, 55–63. doi:10.1016/j.ecolind.2015.05.031
  • Bormann, D. and Elfert, S., 2010. Application of WaSiM-ETH model to Northern German lowland catchments: model performance in relation to catchment characteristics and sensitivity to and use change. Advances in Geosciences, 27, 1–10. doi:10.5194/adgeo-27-1-201
  • Boyle, D.P., et al., 2001. Toward improved streamflow forecasts: value of semidistributed modeling. Water Resources Reseacrh, 37 (11), 2749–2759. doi:10.1029/2000WR000207
  • Camargos, C., et al., 2018. Effects of input data content on the uncertainty of simulating water resources. Water, 10 (5), 621. doi:10.3390/w10050621
  • Carlier, C., et al., 2018. Geology controls streamflow dynamics. Journal of Hydrology, 566, 756–769. doi:10.1016/j.jhydrol.2018.08.069
  • DHI, 2014. MIKE SHE user manual volume 1: user guide. Copenhagen: Mike by DHI.
  • Doummar, J., Sauter, M., and Geyer, T., 2012. Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She) – identification of relevant parameters influencing spring discharge. Journal of Hydrology, 426–427, 112–123. doi:10.1016/j.jhydrol.2012.01.021
  • EEA, 2012. CORINE land-cover 2012 vector data, version v.18.5.1 [ dataset]. Available from: https://land.copernicus.eu/pan-european/corine-land-cover [ Accessed 22 Dec 2015].
  • Fatichi, S., et al., 2016. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537, 45–60. doi:10.1016/j.jhydrol.2016.03.026
  • Foster, S.B. and Allen, D.M., 2015. Groundwater - surface water interactions in a mountain-to-coast watershed: effects of climate change and human stressors. Advances in Meteorology, 2015. Article ID 861805. doi:10.1155/2015/861805
  • Freeze, R.A. and Harlan, R.L., 1969. Blueprint for a physically-based, digitally-simulated hydrologic response model. Journal of Hydrology, 9, 237–258. doi:10.1016/0022-1694(69)90020-1
  • Gilvear, D.J., Spray, C.J., and Casas-Mulet, R., 2013. River rehabilitation for the delivery of multiple ecosystem services at the river network scale. Journal of Environmental Management, 26, 30–43. doi:10.1016/j.jenvman.2013.03.026
  • Heistermann, M. and Kneis, D., 2011. Benchmarking quantitative precipitation estimation by conceptual rainfall-runoff modeling. Water Resources Research, 47 (6), 1–23. doi:10.1029/2010WR009153
  • Hudson, C.E. and Thompson, J.R., 2019. Hydrological modelling of climate change impacts on river flows in Siberia’s Lena River Basin and implications for the Atlantic Meridional Overturning Circulation. Hydrology Research, 50 (6), 1577–1595. doi:10.2166/nh.2019.151
  • Hughes, R.A., 1996. Geological map series, Sheet number: 24E, Sheet title: peebles, 1: 50 000. Edinburgh: Geological Survey of Scotland.
  • Huisman, J.A., et al., 2009. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) III: scenario analysis. Advances in Water Resources, 32, 159–170. doi:10.1016/j.advwatres.2008.06.009
  • Im, S., et al., 2009. Assessing the impacts of land use changes on watershed hydrology using MIKE SHE. Environmental Geology, 57, 231. doi:10.1007/s00254-008-1303-3
  • Jehn, F.U., et al., 2019. Trade-offs between parameter constraints and model realism: a case study. Scientific Reports, 9 (1), 10729. doi:10.1038/s41598-019-46963-6
  • JHI, 2014. James Hutton Instite, Soil Map (National Soil Map), 1:250,000,vector data [ dataset].
  • Kalantari, Z., et al., 2014. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Science of the Total Environment, 466–467, 741–754. doi:10.1016/j.scitotenv.2013.07.047
  • Käser, D. and Hunkeler, D., 2016. Contribution of alluvial groundwater to the outflow of mountainous catchments. Water Resources Research, 52 (2), 680–697. doi:10.1002/2014WR016730
  • Li, Y.K. and Wang, C.Z., 2009. Impacts of urbanization on surface runoff of the Dardenne Creek Watershed, St. Charles County, Missouri. Physical Geography, 30 (6), 556–573. doi:10.2747/0272-3646.30.6.556
  • Lobligeois, F., et al., 2014. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrology & Earth System Sciences Discussions, 18 (2), 575–594. doi:10.5194/hess-18-575-2014
  • MacDonald, A.M., et al., 2012. Relating in situ hydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment. Journal of Hydrology, 434–435, 130–141. doi:10.1016/j.jhydrol.2012.01.018
  • Maidment, D.R., 2002. Arc hydro: GIS for water resources, California: ESRI, 203.
  • Marhaento, H., Booij, M.J., and Hoekstra, A.Y., 2018. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal, 63 (9), 1368–1385. doi:10.1080/02626667.2018.1511054
  • Masih, I., et al., 2011. Assessing the impact of areal precipitation input on streamflow simulations using the SWAT model. Journal of the American Water Resources Association (JAWRA), 47 (1), 179–195. doi:10.1111/j.1752-1688.2010.00502.x
  • Medcalf, J. and Williams, H., 2010. Scottish borders council and tweed forum consortium Tweed aerial survey phase 2: aerial photography interpretation land cover classification and habitat mapping. Final Report. Available from: www.scotborders.gov.uk [ Accessed 3 October 2018].
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Morris, D.A. and Johnson, A.I., 1967. Summary of hydrologic and physical properties of rock and soil materials as analyzed by the hydrologic laboratory of the U.S. geological survey, U.S. Geological Survey Water-Supply Paper 1839-D, 42.
  • Ó Dochartaigh, B.E., et al., 2012. Eddleston water floodplain project: data report. Nottingham, 95.
  • Ó Dochartaigh, B.E., et al., 2019. Geological structure as a control on floodplain groundwater dynamics. Hydrogeology Journal, 27, 703–716. doi:10.1007/s10040-018-1885-0
  • Nash, J. E. and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3). doi:10.1016/0022-1694(70)90255-6 3 10 282-290
  • OS, 2017, Ordnance survey, PROFILE Contours, NTF geospatial data, Scale 1:10000, Tiles: t13ne,nt14ne,nt14se,nt15ne,nt15se,nt23nw,nt23ne,nt24sw,nt24nw,nt24ne,nt24se,nt25sw,nt25nw,nt25ne,nt25se,Updated: November 2009, Ordnance Survey (GB) [ dataset]. EDINA Digimap Ordnance Survey Service. Availble from: http://edina.ac.uk/digimap [ Accessed 17 Apr 2013].
  • Paule-Mercado, M.A., et al., 2017. Influence of land development on stormwater runoff from a mixed land use and land cover catchment. Science of the Total Environment, 599–600, 2142–2155. doi:10.1016/j.scitotenv.2017.05.081
  • Pearce, D., et al., 2014. Glacial geomorphology of the Tweedsmuir Hills, Central Southern Uplands, Scotland. Journal of Maps, 10 (3), 457–465. doi:10.1080/17445647.2014.886492
  • Peskett, L., et al., 2020. The impact of across-slope forest strips on hillslope subsurface hydrological dynamics. Journal of Hydrology, 581, 124427. doi:10.1016/j.jhydrol.2019.124427
  • Ritter, A. and Muñoz-Carpena, R., 2013. Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. doi:10.1016/j.jhydrol.2012.12.004
  • Ross, J.L., Ozbek, M.M., and Pinder, G.F., 2009. Aleatoric and epistemic uncertainty in groundwater flow and transport simulation. Water Resources Research, 45. doi:10.1029/2007WR006799
  • Ruman, S., et al., 2020. Impact of missing precipitation values on hydrological model output: a case study from the Eddleston Water catchment, Scotland. Acta Geophys, 68, 565–576. doi:10.1007/s11600-020-00409-0
  • Sahoo, G.B., Ray, C., and De Carlo, E.H., 2006. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. Journal of Hydrology, 327 (1–2), 94–109. doi:10.1016/j.jhydrol.2005.11.012
  • Scheliga, B., et al., 2018. Groundwater dynamics at the hillslope-riparian interface in a year with extreme rainfall. Journal of Hydrology, 564, 509–528. doi:10.1016/j.jhydrol.2018.06.082
  • Singh, C.R., et al., 2011. Modelling water-level options for ecosystem services and assessment of climate change: Loktak Lake, northeast India. Hydrological Sciences Journal, 56 (8), 1518–1542. doi:10.1080/02626667.2011.631012
  • Terink, W., et al., 2018. Spatial resolutions in areal rainfall estimation and their impact on hydrological simulations of a lowland catchment. Journal of Hydrology, 563, 319–335. doi:10.1016/j.jhydrol.2018.05.045
  • Thompson, J.R., et al., 2004. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. Journal of Hydrology, 293 (1–4), 151–179. doi:10.1016/j.jhydrol.2004.01.017
  • Thompson, J.R., 2012. Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrology Research, 43 (4), 507. doi:10.2166/nh.2012.105
  • Thompson, J.R., et al., 2013. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. Journal of Hydrology, 486, 1–30. doi:10.1016/j.jhydrol.2013.01.029
  • Thompson, J.R., Green, A.J., and Kingston, D.G., 2014. Potential evapotranspiration-related uncertainty in climate change impacts on river flow: an assessment for the Mekong River basin. Journal of Hydrology, 510, 259–279. doi:10.1016/j.jhydrol.2013.12.010
  • Tweed Forum, 2016. The Eddleston water project report (online). C.J Spray, ed. Available from: www.tweedforum.org [ Accessed 3 October 2018].
  • U.S. EPA, 2009. Guidance on the development, evaluation, and application of environmental models. Washington, DC: Council for Regulatory Environmental Modeling U.S. Environmental Protection Agency.
  • Uhlenbrook, S. and Sieber, A., 2005. On the value of experimental data to reduce the prediction uncertainty of a process-oriented catchment model. Environmental Modelling and Software, 20 (1), 19–32. doi:10.1016/j.envsoft.2003.12.006
  • Vannier, O., Anquetin, S., and Braud, I., 2016. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: regional modelling study and process understanding. Journal of Hydrology, 541. doi:10.1016/j.jhydrol.2016.04.001
  • Vaze, J., et al., 2012. Towards best practice model application. Australia: eWater Cooperative Research Centre, 46.
  • Vázquez, R.F. and Feyen, J., 2003. Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment. Journal of Hydrology, 270 (4), 309–327. doi:10.1016/S0022-1694(02)00308-6
  • Vázquez, R.F. and Hampel, H., 2014. Prediction limits of a catchment hydrological model using different estimates of ET. Journal of Hydrology, 513, 216–228. doi:10.1016/j.jhydrol.2014.03.051
  • Walker, W.E., et al., 2003. Defining uncertainty a conceptual basis for uncertainty management in model-based decision support. Integrated Assessment, 4 (1), 5–17. doi:10.1076/iaij.4.1.5.16466
  • Yang, L., et al., 2017. Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrological Processes, 31, 1100–1112. doi:10.1002/hyp.11098
  • Yen, H., et al., 2015. Assessment of model predictions and parameter transferability by alternative land use data on watershed modeling. Journal of Hydrology, 527, 458–470. doi:10.1016/j.jhydrol.2015.04.076
  • Yira, Y., et al., 2016. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso). Journal of Hydrology, 537, 187–199. doi:10.1016/j.jhydrol.2016.03.052
  • Zhu, C.H. and Li, Y., 2014. Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the Little River Watershed, Tennessee. International Soil and Water Conservation Research, 2 (2), 11–21.10.1016/S2095-6339(15)30002-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.