360
Views
3
CrossRef citations to date
0
Altmetric
Special Issue: Advancing socio-hydrology

Size-dependent chemical depletion of sediments in glacial environments: a case study of Mandakini Valley, central Himalaya, India

ORCID Icon, , , , &
Pages 373-388 | Received 11 Mar 2020, Accepted 15 Oct 2020, Published online: 17 Feb 2021

References

  • Anderson, S.P., et al., 2000. Chemical weathering in the foreland of a retreating glacier. Geochimica et Cosmochimica Acta, 64 (7), 1173–1189. doi:10.1016/S0016-7037(99)00358-0.
  • Anderson, S.P., Drever, J.I., and Humphrey, N.F., 1997. Chemical weathering in glacial environments. Geology, 25 (5), 399–402. doi:10.1130/0091-7613(1997)025<0399:CWIGE>2.3.CO;2.
  • Bahlburg, H. and Dobrzinski, N., 2011. Chapter 6 A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geological Society, London, Memoirs, 36 (1), 81–92. doi:10.1144/M36.6.
  • Baldwin, D.S., 1996. The phosphorus composition of a diverse series of Australian sediments. Hydrobiologia, 335 (1), 63–73. doi:10.1007/BF00013684.
  • Benn, D.I. and Owen, L.A., 1998. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. Journal of the Geological Society, 155 (2), 353–363. doi:10.1144/gsjgs.155.2.0353.
  • Benn, D.I. and Owen, L.A., 2002. Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quaternary International, 97-98, 3–25. doi:10.1016/S1040-6182(02)00048-4
  • Bhutiyani, M.R., 2000. Sediment load characteristics of a proglacial stream of Siachen Glacier and the erosion rate in Nubra valley in the Karakoram Himalayas, India. Journal of Hydrology, 227 (1–4), 84–92. doi:10.1016/S0022-1694(99)00174-2.
  • Bickle, M.J., et al., 2001. Controls on the 87Sr/86Sr ratio of carbonates in the Garhwal Himalaya, headwaters of the Ganges. The Journal of Geology, 109 (6), 737–753. doi:10.1086/323192.
  • Bickle, M.J., et al., 2005. Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges. Geochimica et Cosmochimica Acta, 69 (9), 2221–2240. doi:10.1016/j.gca.2004.11.019.
  • Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76 (7), 803–832. doi:10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.
  • Boulton, G.S., 1978. Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology, 25 (6), 773–799. doi:10.1111/j.1365-3091.1978.tb00329.x.
  • Carrols, D., 1970. Clay minerals: a guide to their x-ray identification. Bulletin of the Geological Society of America, 126, 48–65.
  • Carver, R.E., 1971. Procedures in sedimentary petrology. New York: John Wiley & Sons Incorporated.
  • Cox, R. and Lowe, D.R., 1995. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. Journal of Sedimentary Research, 65 (1), 1–12.
  • Dalai, T.K., Krishnaswami, S., and Sarin, M.M., 2002. Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochimica et Cosmochimica Acta, 66 (19), 3397–3416. doi:10.1016/S0016-7037(02)00937-7.
  • Derry, L.A. and France-Lanord, C., 1996. Neogene Himalayan weathering history and river87Sr86Sr: impact on the marine Sr record. Earth and Planetary Science Letters, 142 (1–2), 59–74. doi:10.1016/0012-821X(96)00091-X.
  • English, N.B., et al., 2000. Geologic control of Sr and major element chemistry in Himalayan Rivers, Nepal. Geochimica et Cosmochimica Acta, 64 (15), 2549–2566. doi:10.1016/S0016-7037(00)00379-3.
  • Eynatten, H.V., Tolosana-Delgado, R., and Karius, V., 2012. Sediment generation in modern glacial settings: grain-size and source-rock control on sediment composition. Sedimentary Geology, 280, 80–92. doi:10.1016/j.sedgeo.2012.03.008
  • Fedo, C.M., Wayne Nesbitt, H., and Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23 (10), 921–924. doi:10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
  • Föllmi, K.B., et al., 2009. Weathering and the mobility of phosphorus in the catchments and forefields of the Rhône and Oberaar glaciers, central Switzerland: implications for the global phosphorus cycle on glacial–interglacial timescales. Geochimica et Cosmochimica Acta, 73 (8), 2252–2282. doi:10.1016/j.gca.2009.01.017.
  • Förstner, U. and Wittmann, G.T.W., 1981. Heavy metals in the aquatic environment. Berlin: Springer Verlag.
  • France-Lanord, C. and Derry, L.A., 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390 (6655), 65–67. doi:10.1038/36324.
  • Gaillardet, J., et al., 2003. Geochemistry of the suspended sediments of circum-himalayan rivers and weathering budgets over the last 50 Myrs. In EGS-AGU-EUG Joint Assembly, Nice France, 6–11 April 2003, Abs. ID. 13617.
  • Gaillardet, J., Dupré, B., and Allègre, C.J., 1999. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63 (23–24), 4037–4051. doi:10.1016/S0016-7037(99)00307-5.
  • Galy, A. and France-Lanord, C., 1999. Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159 (1–4), 31–60. doi:10.1016/S0009-2541(99)00033-9.
  • Galy, A. and France-Lanord, C., 2001. Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology, 29 (1), 23–26. doi:10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2.
  • Guidry, M.W. and Mackenzie, F.T., 2000. Apatite weathering and the Phanerozoic phosphorus cycle. Geology, 28 (7), 631–634. doi:10.1130/0091-7613(2000)28<631:AWATPP>2.0.CO;2.
  • Hammer, K.M. and Smith, N.D., 1983. Sediment production and transport in a proglacial stream: Hilda Glacier, Alberta, Canada. Boreas, 12 (2), 91–106. doi:10.1111/j.1502-3885.1983.tb00441.x.
  • Haritashya, U.K., et al., 2006. Suspended sediment from the Gangotri Glacier: quantification, variability and associations with discharge and air temperature. Journal of Hydrology, 321 (1–4), 116–130. doi:10.1016/j.jhydrol.2005.07.037.
  • Haritashya, U.K., Kumar, A., and Singh, P., 2010. Particle size characteristics of suspended sediment transported in meltwater from the Gangotri Glacier, central Himalaya — an indicator of subglacial sediment evacuation. Geomorphology, 122 (1–2), 140–152. doi:10.1016/j.geomorph.2010.06.006.
  • Hasnain, S.I. and Thayyen, R.J., 1999. Discharge and suspended-sediment concentration of meltwaters, draining from the Dokriani glacier, Garhwal Himalaya, India. Journal of Hydrology, 218 (3–4), 191–198. doi:10.1016/S0022-1694(99)00033-5.
  • Heim, A. and Gansser, A., 1939. Central Himalaya. Delhi: Hindustan Publishing.
  • Hessler, A.M. and Lowe, D.R., 2006. Weathering and sediment generation in the Archean: an integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research, 151 (3–4), 185–210. doi:10.1016/j.precamres.2006.08.008.
  • Hilton, R.G., et al., 2010. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta, 74 (11), 3164–3181. doi:10.1016/j.gca.2010.03.004.
  • Jacobson, A.D. and Blum, J.D., 2000. Ca/Sr and 87Sr/86Sr geochemistry of disseminated calcite in Himalayan silicate rocks from Nanga Parbat: influence on river-water chemistry. Geology, 28 (5), 463–466. doi:10.1130/0091-7613(2000)28<463:SASGOD>2.0.CO;2.
  • Jacobson, A.D., Blum, J.D., and Walter, L.M., 2002. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochimica et Cosmochimica Acta, 66 (19), 3417–3429. doi:10.1016/S0016-7037(02)00951-1.
  • Jensen, H.S. and Andersen, F.O., 1992. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography, 37 (3), 577–589. doi:10.4319/lo.1992.37.3.0577.
  • Jha, S.K., Shrivastava, J.P., and Bhairam, C.L., 2012. Clay mineralogical studies on Bijawars of the Sonrai Basin: palaeoenvironmental implications and inferences on the uranium mineralization. Journal of the Geological Society of India, 79 (2), 117–134. doi:10.1007/s12594-012-0028-9.
  • Karim, A. and Veizer, J., 2000. Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chemical Geology, 170 (1–4), 153–177. doi:10.1016/S0009-2541(99)00246-6.
  • Kumar, A., et al., 2016. Hydroclimatic influence on particle size distribution of suspended sediments evacuated from debris-covered Chorabari Glacier, upper Mandakini catchment, central Himalaya. Geomorphology, 265, 45–67. doi:10.1016/j.geomorph.2016.04.019
  • Lottermoser, B.G., Ashley, P.M., and Lawie, D.C., 1999. Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales, Australia. Environmental Geology, 39 (1), 61–74. doi:10.1007/s002540050437.
  • Lukkari, K., et al., 2007. Fractionation of sediment phosphorus revisited. I: fractionation steps and their biogeochemical basis. Limnology and Oceanography: Methods, 5 (12), 433–444.
  • Lupker, M., et al., 2012. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochimica et Cosmochimica Acta, 84, 410–432. doi:10.1016/j.gca.2012.02.001.
  • McLean, S.A., et al., 1972. The occurrence of sepiolite and attapulgite on the southern High Plains. Clays and Clay Minerals, 20 (3), 143–149. doi:10.1346/CCMN.1972.0200305.
  • McLennan, S.M., et al., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America, Special Papers, 284, 21–40.
  • Meybeck, M., 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287 (5), 401–428. doi:10.2475/ajs.287.5.401.
  • Middelburg, J.J., van der Weijden, C.H., and Woittiez, J.R.W., 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68 (3–4), 253–273. doi:10.1016/0009-2541(88)90025-3.
  • Nesbitt, H. and Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885), 715–717. doi:10.1038/299715a0.
  • Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279 (5710), 206–210. doi:10.1038/279206a0.
  • Nesbitt, H.W., 2003. Petrogenesis of siliciclastic sediments and sedimentary rocks. Geochemistry of Sediments and Sedimentary Rocks, 4, 39–51.
  • Nesbitt, H.W. and Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48 (7), 1523–1534. doi:10.1016/0016-7037(84)90408-3.
  • Oliver, L., et al., 2003. Silicate weathering rates decoupled from the 87Sr/86Sr ratio of the dissolved load during Himalayan erosion. Chemical Geology, 201 (1–2), 119–139. doi:10.1016/S0009-2541(03)00236-5.
  • Owen, L.A., Derbyshire, E., and Scott, C.H., 2003. Contemporary sediment production and transfer in high-altitude glaciers. Sedimentary Geology, 155 (1–2), 13–36. doi:10.1016/S0037-0738(02)00156-2.
  • Owen, L.A. and Sharma, M.C., 1998. Rates and magnitudes of paraglacial fan formation in the Garhwal Himalaya: implications for landscape evolution. Geomorphology, 26 (1–3), 171–184. doi:10.1016/S0169-555X(98)00057-9.
  • Pandey, S.K., SINGH, A.K., and HASNAIN, S.I., 2002. Grain-size distribution, morphoscopy and elemental chemistry of suspended sediments of Pindari Glacier, Kumaon Himalaya, India. Hydrological Sciences Journal, 47 (2), 213–226. doi:10.1080/02626660209492925.
  • Rice, C.M., 1973. Chemical weathering on the Carnmenellis granite. Mineralogical Magazine, 39 (304), 429–447. doi:10.1180/minmag.1973.039.304.06.
  • Sarin, M.M., et al., 1992. Major ion chemistry of the Ganga source waters: weathering in the high altitude Himalaya. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 101 (1), 89–98.
  • Shiller, A.M. and Frilot, D.M., 1996. The geochemistry of gallium relative to aluminum in Californian streams. Geochimica et Cosmochimica Acta, 60 (8), 1323–1328. doi:10.1016/0016-7037(96)00002-6.
  • Shukla, T., et al., 2018b. Carbonate and silicate weathering in glacial environments and its relation to atmospheric CO 2 cycling in the Himalaya. Annals of Glaciology, 59 (77), 159–170. doi:10.1017/aog.2019.5.
  • Shukla, T., et al., 2020a. Late-Holocene climate response and glacial fluctuations revealed by the sediment record of the monsoon-dominated Chorabari Lake, Central Himalaya. The Holocene, 30 (7), 953–965. doi:10.1177/0959683620908654.
  • Shukla, T., et al., 2020b. Misinterpreting proxy data for paleoclimate signals: a reply to Srivastava and Jovane, 2020. The Holocene, 30 (12), 1874–1883. doi:10.1177/0959683620950481
  • Singh, A.K. and Hasnain, S.I., 2002. Aspects of weathering and solute acquisition processes controlling chemistry of sub-Alpine proglacial streams of Garhwal Himalaya, India. Hydrological Processes, 16 (4), 835–849. doi:10.1002/hyp.367.
  • Singh, D.S., 2014a. Surface processes during flash floods in the glaciated terrain of Kedarnath, Garhwal Himalaya and their role in the modification of landforms. Current Science, 106 (4), 594–597.
  • Singh, D.S., et al., 2017. Pattern of retreat and related morphological zones of Gangotri Glacier, Garhwal Himalaya, India. Quaternary International, 444, 172–181. doi:10.1016/j.quaint.2016.07.025.
  • Singh, D.S. and Mishra, A., 2001. Gangotri glacier characteristics, retreat and processes of sedimentation in the Bhagirathi valley. Geological Survey of India Special Publication, 65, 17–20.
  • Singh, P., 2010. Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chemical Geology, 269 (3–4), 220–236. doi:10.1016/j.chemgeo.2009.09.020.
  • Singh, S.K., Sarin, M.M., and France-Lanord, C., 2005. Chemical erosion in the eastern Himalaya: major ion composition of the Brahmaputra and δ13C of dissolved inorganic carbon. Geochimica et Cosmochimica Acta, 69 (14), 3573–3588. doi:10.1016/j.gca.2005.02.033.
  • Singh, V.B., et al., 2014b. Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. Journal of Asian Earth Sciences, 79, 224–234. doi:10.1016/j.jseaes.2013.09.010.
  • Singh, V.B. and Ramanathan, A.L., 2015a. Assessment of solute and suspended sediments acquisition processes in the Bara Shigri glacier meltwater (Western Himalaya, India). Environmental Earth Sciences, 74 (3), 2009–2018. doi:10.1007/s12665-015-4584-3.
  • Singh, V.B., Ramanathan, A.L., and Sharma, P., 2015b. Major ion chemistry and assessment of weathering processes of the Patsio glacier meltwater, Western Himalaya, India. Environmental Earth Sciences, 73 (1), 387–397. doi:10.1007/s12665-014-3432-1.
  • Snedecor, G.W. and Cochran, W.G., 1967. Statistical methods. 6th ed. Ames, IA: Iowa State University, 135–317.
  • Stephens, et al., 1979. Structural and chemical aspects of metamorphic layering development in metasediments from Clunes, Australia. American Journal of Science, 279 (2), 129–160. doi:10.2475/ajs.279.2.129.
  • Sundriyal, S., et al., 2018. Deposition of atmospheric pollutant and their chemical characterization in snow pit profile at Dokriani Glacier, Central Himalaya. Journal of Mountain Science, 15 (10), 2236–2246. doi:10.1007/s11629-017-4817-x.
  • Suttner, L.J. and Dutta, P.K., 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Research, 56 (3), 329–345.
  • Swift, D.A., Nienow, P.W., and Hoey, T.B., 2005. Basal sediment evacuation by subglacial meltwater: suspended sediment transport from Haut Glacier d’Arolla, Switzerland. Earth Surface Processes and Landforms, 30 (7), 867–883. doi:10.1002/esp.1197.
  • Thayyen, R.J., GERGAN, J.T., and DOBHAL, D.P., 1999. Particle size characteristics of suspended sediments and subglacial hydrology of Dokriani Glacier, Garhwal Himalaya, India. Hydrological Sciences Journal, 44 (1), 47–61. doi:10.1080/02626669909492202.
  • Torres, M.A., et al., 2017. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proceedings of the National Academy of Sciences, 114 (33), 8716–8721. doi:10.1073/pnas.1702953114.
  • Tripathy, G.R., et al., 2010. Temporal variations in Sr and 87Sr/86Sr of the Ganga headwaters: estimates of dissolved Sr flux to the mainstream. Hydrological Processes: An International Journal, 24 (9), 1159–1171. doi:10.1002/hyp.7572.
  • Valdiya, K.S., 1998. Dynamic himalaya. Hyderabad, India: Universities Press, 178, ISBN 81-7371-094- 5.
  • Valdiya, K.S., et al., 1999a. Tectonic and lithological characterization of Himadri (Great Himalaya) between Kali and Yamuna rivers, central Himalaya. Himalayan Geology, 20 (2), 1–17.
  • Valdiya, K.S., 1999b. Rising Himalaya: advent and intensification of monsoon. Current Science, 76, 514–524.
  • Walling, D.E., et al., 2003. Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied Geochemistry, 18 (2), 195–220. doi:10.1016/S0883-2927(02)00121-X.
  • Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30 (5), 377–392. doi:10.1086/622910.
  • West, A.J., GALY, A., and BICKLE, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235 (1–2), 211–228. doi:10.1016/j.epsl.2005.03.020.
  • White, R.E., 1980. Retention and release of phosphate by soil and soil constituents. In: P.B. Tinker, ed. Soils and agriculture. Critical Reports on Applied Chemistry Volume 2. Society of Chemical Industry. Oxford: Blackwell Scientific Publications, 71–114.
  • Woodward, J.C., et al., 2002. Composite suspended sediment particles and flocculation in glacial meltwaters: preliminary evidence from Alpine and Himalayan basins. Hydrological Processes, 16 (9), 1735–1744. doi:10.1002/hyp.361.
  • Yin, A., 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76 (1–2), 1–131. doi:10.1016/j.earscirev.2005.05.004.
  • Young, G.M., MINTER, W., and THERON, J., 2004. Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the table Mountain Group, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 214 (4), 323–345. doi:10.1016/S0031-0182(04)00399-2.
  • Young, G.M. and Wayne Nesbitt, H., 1999. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: a chemostratigraphic approach. Geological Society of America Bulletin, 111 (2), 264–274. doi:10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.