581
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of reservoirs on baseflow recession analysis: a case study of the Chaersen Reservoir in Northeast China

ORCID Icon, , , &
Pages 951-960 | Received 16 Aug 2020, Accepted 07 Jan 2021, Published online: 26 Apr 2021

References

  • Aksoy, H. and Wittenberg, H., 2011. Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 56 (2), 226–237. doi:10.1080/02626667.2011.553614
  • Arciniega-Esparza, S., et al., 2017. HYDRORECESSION: a Matlab toolbox for streamflow recession analysis. Computers & Geosciences, 98, 87–92. doi:10.1016/j.cageo.2016.10.005
  • Beck, H.E., et al., 2013. Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resources Research, 49 (12), 7843–7863. doi:10.1002/2013WR013918
  • Bian, X. and Bi, W., 2016. Environmental impact analysis of Chaersen Reservoir. Northeast Water Resources and Hydropower (In Chinese), 34 (9), 28–30.
  • Bruno, M.C. and Siviglia, A., 2012. Assessing impacts of dam operations-interdisciplinary approaches for sustainable regulated river management. River Research and Applications, 28 (6), 675–677. doi:10.1002/rra.1616
  • Brutsaert, W., 2008. Long-term groundwater storage trends estimated from streamflow records: climatic perspective. Water Resources Research, 44 (2), W02409. doi:10.1029/2007WR006518
  • Brutsaert, W. and Nieber, J.L., 1977. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13 (3), 637–643. doi:10.1029/WR013i003p00637
  • Chapman, T., 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13 (5), 701–714. doi:10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
  • Di Baldassarre, G., et al., 2018. Water shortages worsened by reservoir effects. Nature Sustainability, 1 (11), 617–622. doi:10.1038/s41893-018-0159-0
  • Grill, G., et al., 2015. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 10 (1), 015001. doi:10.1088/1748-9326/10/1/015001
  • Guo, C., et al., 2020. On the cumulative dam impact in the upper Changjiang River: streamflow and sediment load changes. Catena, 184, 104250. doi:10.1016/j.catena.2019.104250.
  • Han, Z., et al., 2019. Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. Journal of Hydrology, 570, 96–105. doi:10.1016/j.jhydrol.2018.12.048
  • Huang, X.-R., et al., 2018. Cumulative impact of dam constructions on streamflow and sediment regime in lower reaches of the Jinsha River, China. Journal of Mountain Science, 15 (12), 2752–2765. doi:10.1007/s11629-018-4924-3
  • Huyck, A.A.O., Pauwels, V.R.N., and Verhoest, N.E.C., 2005. A base flow separation algorithm based on the linearized Boussinesq equation for complex hillslopes. Water Resources Research, 41 (8), W08415. doi:10.1029/2004WR003789
  • Jia, H., 2015. Analysis and calculation of groundwater resources in the Southern Valley of Inner Mongolia Autonomous Region Wulanhaote. Master. China university of geosciences.
  • Kirchner, J.W., 2009. Catchments as simple dynamical systems: catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45 (2), W02429. doi:10.1029/2008WR006912
  • Kou, L., 2016. The situation analysis of water resources in Tao’er river basin based on SWAT model. Master (Master). Dalian university of technology.
  • Lehner, B., et al., 2011. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Frontiers in Ecology and the Environment, 9 (9), 494–502. doi:10.1890/100125
  • Li, M., et al., 2020a. Quantitative evaluation of groundwater–Surface water interactions: application of cumulative exchange fluxes method. Water, 12 (1), 259. doi:10.3390/w12010259.
  • Li, M., et al., 2020b. Evaluation of reservoir-induced hydrological alterations and ecological flow based on multi-indicators. Water, 12, 7.
  • Li, S., 2018. Analysis of reservoir flood scheduling scheme of Chahar Tao’er river basin. Master (Master). Jilin university.
  • Liu, Y., 2019. Research on water resources utilization and sustainable development of chaersen reservoir. Northeast Water Resources and Hydropower (In Chinese), 37 (12), 26–27+32.
  • Lu, W., et al., 2018. Quantifying the impacts of small dam construction on hydrological alterations in the Jiulong River basin of Southeast China. Journal of Hydrology, 567, 382–392. doi:10.1016/j.jhydrol.2018.10.034
  • Maillet, E., 1905. Essai d’Hydraulique Souterraine et Fluviale. Paris: Librairie Scientifique.
  • Oyarzún, R., et al., 2014. Recession flow analysis as a suitable tool for hydrogeological parameter determination in steep, arid basins. Journal of Arid Environments, 105, 1–11. doi:10.1016/j.jaridenv.2014.02.012
  • Rheinheimer, D.E., Yarnell, S.M., and Viers, J.H., 2013. Hydropower costs of environmental flows and climate warming in California’s Upper Yuba River watershed. River Research and Applications, 29 (10), 1291–1305. doi:10.1002/rra.2612
  • Richter, B., et al., 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10, 1163–1174. doi:10.1046/j.1523-1739.1996.10041163.x
  • Singer, M.B., 2007. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California. River Research and Applications, 23 (1), 55–72. doi:10.1002/rra.968
  • Stoelzle, M., Stahl, K., and Weiler, M., 2013. Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences, 17 (2), 817–828. doi:10.5194/hess-17-817-2013
  • Tallaksen, L.M., 1995. A review of baseflow recession analysis. Journal of Hydrology, 165 (1), 349–370. doi:10.1016/0022-1694(94)02540-R
  • Thomas, B.F., et al., 2013. Estimation of the base flow recession constant under human interference. Water Resources Research, 49 (11), 7366–7379. doi:10.1002/wrcr.20532
  • Thomas, B.F., Vogel, R.M., and Famiglietti, J.S., 2015. Objective hydrograph baseflow recession analysis. Journal of Hydrology, 525, 102–112. doi:10.1016/j.jhydrol.2015.03.028
  • Van Loon, A.F., et al., 2019. Using paired catchments to quantify the human influence on hydrological droughts. Hydrology and Earth System Sciences, 23 (3), 1725–1739. doi:10.5194/hess-23-1725-2019
  • Vogel, R.M. and Kroll, C.N., 1992. Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resources Research, 28 (9), 2451–2458. doi:10.1029/92WR01007
  • Wang, D. and Cai, X., 2009. Detecting human interferences to low flows through base flow recession analysis. Water Resources Research, 45 (7), W07426. doi:10.1029/2009WR007819
  • Wang, D. and Cai, X., 2010. Recession slope curve analysis under human interferences. Advances in Water Resources, 33 (9), 1053–1061. doi:10.1016/j.advwatres.2010.06.010
  • Wang, Y., Rhoads, B.L., and Wang, D., 2016. Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction: potential ecological implications. Hydrological Processes, 30, 3949–3966. doi:10.1002/hyp.10921.
  • Wittenberg, H., 1999. Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes, 13 (5), 715–726. doi:10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N
  • Wittenberg, H., 2003. Effects of season and man-made changes on baseflow and flow recession: case studies. Hydrological Processes, 17 (11), 2113–2123. doi:10.1002/hyp.1324
  • Wittenberg, H. and Sivapalan, M., 1999. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of Hydrology, 219 (1), 20–33. doi:10.1016/S0022-1694(99)00040-2
  • Yang, W., Xiao, C., and Liang, X., 2019. Technical note: analytical sensitivity analysis and uncertainty estimation of baseflow index calculated by a two-component hydrograph separation method with conductivity as a tracer. Hydrology and Earth System Sciences, 23 (2), 1103–1112. doi:10.5194/hess-23-1103-2019
  • Yang, W., Xiao, C., and Liang, X., 2020. Extraction method of baseflow recession segments based on second-order derivative of streamflow and comparison with four conventional methods. Water, 12 (7), 1953. doi:10.3390/w12071953.
  • Zhang, L., et al., 2008. Analysis of low-flow characteristics for catchments in Dongjiang Basin, China. Hydrogeology Journal, 17 (3), 631–640. doi:10.1007/s10040-008-0386-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.