623
Views
6
CrossRef citations to date
0
Altmetric
Special Issue: Advancing socio-hydrology

Water security implications of climate and socio-economic stressors for river basin management

ORCID Icon & ORCID Icon
Pages 1097-1112 | Received 04 Sep 2020, Accepted 23 Feb 2021, Published online: 27 May 2021

References

  • Adeloye, A.J., et al., 2019. Height–area–storage functional models for evaporation-loss inclusion in reservoir-planning analysis. Water, 11 (7), 1413. doi:10.3390/w11071413
  • Adeloye, A.J. and Dau, Q.V., 2019. Hedging as an adaptive measure for climate change induced water shortage at the Pong reservoir in the Indus Basin Beas River, India. Science of the Total Environment, 687, 554–566. doi:10.1016/j.scitotenv.2019.06.021
  • Agarwal, S., et al., 2019. Assessment of water supply-demand using water evaluation and planning (WEAP) model for Ur River watershed, Madhya Pradesh, India. Journal of the Institution of Engineers (India): Series A, 100, 21–32. doi:10.1007/s40030-018-0329-0
  • Akoglu, H., 2018. User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18 (3), 91–93. doi:10.1016/j.tjem.2018.08.001
  • Allan, R., et al., 1998. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56 (Vol. 56). Available from: http://www.fao.org/3/x0490e/x0490e00.htm [Accessed 20 Jun 2018].
  • Ausseil, A.G.E., et al., 2019. Towards an integrated assessment of climate and socio-economic change impacts and implications in New Zealand. Environmental Modelling & Software, 119, 1–20. doi:10.1016/j.envsoft.2019.05.009
  • Bannister, D., et al., 2019. Bias correction of high-resolution regional climate model precipitation output gives the best estimates of precipitation in Himalayan catchments. Journal of Geophysical Research: Atmospheres, 124 (24), 14220–14239. doi:10.1029/2019jd030804
  • Barnett, T.P., Adam, J.C., and Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438 (7066), 303–309. doi:10.1038/nature04141
  • Bhadoriya, U.P.S., et al., 2020. Implications of climate change on water storage and filling time of a multipurpose reservoir in India. Journal of Hydrology, 590, 125542. doi:10.1016/j.jhydrol.2020.125542
  • CGD (Climate and Global Dynamics Laboratory), 2020. Spatial population scenarios. Available from: http://www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html [Accessed 15 Jan 2020].
  • CGWB (Central Ground Water Board), 2020. State profile. India: Central Ground Water Board, Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation. Available from: http://cgwb.gov.in [Accessed 16 Dec 2020].
  • Chaturvedi, R.K., et al., 2014. Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change, 123 (2), 315–328. doi:10.1007/s10584-013-1052-5
  • Chaturvedi, V., et al., 2020. Cooperation or rivalry? Impact of alternative development pathways on India’s long-term electricity generation and associated water demands. Energy, 192, 116708. doi:10.1016/j.energy.2019.116708
  • Chatuvedi, V., et al., 2017. Implications of shared socio-economic pathways for India’s long-term electricity generation and associated water demands. New Delhi: Council on Energy, Environment and Water.
  • Cramér, H., 1946. Mathematical Methods of Statistics (PMS-9). Vol. 9. New Jersey, USA: Princeton University Press.
  • DAC (Department of Agriculture Cooperation), 2018. State farmer guide. Available from: http://farmech.dac.gov.in [Accessed 10 Jan 2019].
  • Dau, Q.V. and Kuntiyawichai, K., 2020. Identifying adaptive reservoir operation for future climate change scenarios: a case study in Central Vietnam. Water Resources, 47 (2), 189–199. doi:10.1134/S009780782002013X
  • Dau, Q.V., Kuntiyawichai, K., and Adeloye, A.J., 2021b. Future changes in water availability due to climate change projections for Huong Basin, Vietnam. Environmental Processes, 8, 77–98. doi:10.1007/s40710-020-00475-y
  • Dau, Q.V., Kuntiyawichai, K., and Plermkamon, V., 2017. Quantification of flood damage under potential climate change impacts in Central Vietnam. Irrigation and Drainage, 66 (5), 842–853. doi:10.1002/ird.2160
  • Dau, Q.V., Kuntiyawichai, K., and Suryadi, F.X., 2018. Drought severity assessment in thelower Nam Phong River Basin, Thailand. Songklanakarin Journal of Science and Technology, 40 (4), 985–992. doi:10.14456/sjst-psu.2018.99
  • Dau, Q.V., Momblanch, A., and Adeloye, A.J., 2021a. Adaptation in a Himalayan water resources system under a sustainable socio-economic pathway in a high-emission context. Journal of Hydrologic Engineering, 26 (3), 04021003. doi:10.1061/(ASCE)HE.1943-5584.0002064
  • Dehghanipour, A.H., et al., 2019. A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: multi-objective calibration and quantification of historical drought impacts. Agricultural Water Management, 223, 105704. doi:10.1016/j.agwat.2019.105704
  • Ding, J., et al., 2018. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963–2015. Scientific Reports, 8 (1), 11860. doi:10.1038/s41598-018-30320-0
  • Du, M., et al., 2004. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 41 (3), 241–249. doi:10.1016/j.gloplacha.2004.01.010
  • Dyurgerov, M.B. and Meier, M.F., 2005. Glaciers and the changing earth system: a 2004 Snapshot. www.instaar.colorado.edu.
  • Fathizad, H., Rostami, N., and Faramarzi, M., 2015. Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environmental Monitoring and Assessment, 187 (10), 629. doi:10.1007/s10661-015-4805-y
  • Gao, J., 2017. Downscaling global spatial population projections from 1/8-degree to 1-km grid cells. NCAR Technical Note NCAR/TN-537+STR. National Center for Atmospheric Research, 9. doi:10.5065/D60Z721H
  • Gibson, L., et al., 2018. Future land cover change scenarios in South African grasslands - implications of altered biophysical drivers on land management. Heliyon, 4 (7), e00693–e00693. doi:10.1016/j.heliyon.2018.e00693
  • Hamad, R., Balzter, H., and Kolo, K., 2018. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10 (10), 3421. doi:10.3390/su10103421
  • IPCC (Intergovernmental Panel on Climate Change), 2018. Global warming of 1.5°C (An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty). Available from: www.ipcc.ch/sr15 [Accessed 12 Sep 2020].
  • Jain, S.K., Goswami, A., and Saraf, A.K., 2008. Determination of land surface temperature and its lapse rate in the Satluj River basin using NOAA data. International Journal of Remote Sensing, 29 (11), 3091–3103. doi:10.1080/01431160701468992
  • Jones, B. and O’Neill, B.C., 2016. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters, 11 (84003). doi:10.1088/1748-9326/11/8/084003
  • Joseph, N., et al., 2020. Investigation into sustainable water use in India using combined large-scale earth system-based modelling and census-based statistical data. Journal of Hydrology, 587, 124930. doi:10.1016/j.jhydrol.2020.124930
  • Kattelmann, R., 1987. Uncertainty in assessing Himalayan water resources. Mountain Research and Development, 7 (3), 279–286. doi:10.2307/3673206
  • Kou, L., et al., 2018. Simulation of urban water resources in Xiamen based on a WEAP model. Water, 10 (6), 732. doi:10.3390/w10060732
  • Kulkarni, A. and Karyakarte, Y., 2014. Observed changes in Himalayan glaciers. Current Science, 106 (2), 237–244.
  • Kumar, V., Singh, P., and Singh, V., 2007. Snow and glacier melt contribution in the Beas River at Pandoh Dam, Himachal Pradesh, India. Hydrological Sciences Journal, 52 (2), 376–388. doi:10.1623/hysj.52.2.376
  • Kuntiyawichai, K., et al., 2017. Climate change vulnerability mapping for the Greater Mekong Sub-region. Chiang Mai University Journal of Natural Sciences, 16 (3), 165–173. doi:10.12982/CMUJNS.2017.0013
  • Lenderink, G., Buishand, A., and van Deursen, W., 2007. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences, 11 (3), 1145–1159. doi:10.5194/hess-11-1145-2007
  • Liping, C., Yujun, S., and Saeed, S., 2018. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLOS ONE, 13 (7), e0200493. doi:10.1371/journal.pone.0200493
  • Marko, K., Zulkarnain, F., and Kusratmoko, E., 2016. Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: upper Ci Leungsi catchment area). IOP Conference Series: Earth and Environmental Science, 47, 012032. doi:10.1088/1755-1315/47/1/012032
  • McMahon, T.A. and Adeloye, A., 2005. Water resources yield. Littleton, Colorado, USA: Water Resources Publications.
  • Mittal, S., Ahlgren, E.O., and Shukla, P.R., 2019. Future biogas resource potential in India: a bottom-up analysis. Renewable Energy, 141, 379–389. doi:10.1016/j.renene.2019.03.133
  • Monserud, R.A. and Leemans, R., 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62 (4), 275–293. doi:10.1016/0304-3800(92)90003-W
  • NASA (National Aeronautics and Space Administration), 2018. Data to information. Available from: www.science.nasa.gov/data-information [Accessed 15 Aug 2019].
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Pontius, R., 2000. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering & Remote Sensing, 66 (8), 1011–1016.
  • Pontius, R., 2002. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogrammetric Engineering and Remote Sensing, 68 (10), 1041–1050.
  • Prasad, V., et al., 2019. Large losses in glacier area and water availability by the end of twenty-first Century under high emission scenario, Satluj Basin, Himalaya. Current Science, 116, 1721–1730. doi:10.18520/cs/v116/i10/1721-1730
  • Rajeevan, U. and Mishra, B.K., 2020. Sustainable management of the groundwater resource of Jaffna, Sri Lanka with the participation of households: insights from a study on household water consumption and management. Groundwater for Sustainable Development, 10, 100280. doi:10.1016/j.gsd.2019.100280
  • RajRAS (Rajasthan Administrative Services), 2018. Rajasthan geography. RajRAS. Available from: https://books.google.fr/books?id=AX6kDwAAQBAJ [Accessed 20 Aug 2020].
  • Rawat, S., Lahari, S., and Gosain, A., 2018. Integrated water resource assessment of irrigation system of Haryana. Agricultural Sciences, 9, 489–510. doi:10.4236/as.2018.94034
  • SABDRP (South Asia Network on Dams, Rivers and People), 2013a. Hydropower generation performance in Beas River basin. South Asia Network on Dams, Rivers and People. New Delhi, India. Available from: http://www.sandrp.in [Accessed 21 Dec 2020].
  • SABDRP (South Asia Network on Dams, Rivers and People), 2013b. Hydropower generation performance in Sutlej River basin. South Asia Network on Dams, Rivers and People. New Delhi, India. Available from: http://www.sandrp.in [Accessed 21 Dec 2020].
  • Sarkar, S. and Maity, R., 2020. Increase in probable maximum precipitation in a changing climate over India. Journal of Hydrology, 585, 124806. doi:10.1016/j.jhydrol.2020.124806
  • Shivakoti, G., et al., 2016. Redefining diversity and dynamics of natural resources management in Asia, Volume 4: the reciprocal relationship between governance of natural resources and socio-ecological systems dynamics in West Sumatra Indonesia. Amsterdam, Netherlands: Elsevier.
  • Shukla, P., et al., 2015. Pathways to deep decarbonization in India. SDSN - IDDRI. Available from: http://deepdecarbonization.org/wp-content/uploads/2015/09/DDPP_IND.pdf [Accessed 26 Apr 2020].
  • Sieber, J. and Purkey, D., 2011. WEAP, water evaluation and planning system [User guide]. Available from: https://www.weap21.org [Accessed 15 Jan 2019].
  • Sridharan, V., et al., 2019. The Impact of climate change on crop production in Uganda—An integrated systems assessment with water and energy implications. Water, 11 (9), 1805. doi:10.3390/w11091805
  • Taylor, K.E., Stouffer, R.J., and Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 (4), 485–498. doi:10.1175/BAMS-D-11-00094.1
  • UCLouvain, 2017. ESA climate change initiative - land cover. Available from: http://maps.elie.ucl.ac.be/CCI/viewer/download.php [Accessed 15 Feb 2019].
  • UN (United Nations), 2019. World population prospects 2019: highlights. Available from: www.un.org [Accessed 14 Jun 2020].
  • USGS, 2018. ASTER global digital elevation model. Available from: https://asterweb.jpl.nasa.gov/gdem.asp [Accessed 10 Feb 2019].
  • Vashisht, A., 2008. Status of water resources in Punjab and its management strategies. Journal of Indian Water Resources Society, 28, 1–8.
  • Wang, X., et al., 2017. Evaluation of climate on the Tibetan Plateau using ERA-Interim reanalysis and gridded observations during the period 1979–2012. Quaternary International, 444, 76–86. doi:10.1016/j.quaint.2016.12.041
  • WaterAid-India, 2005. Drinking water and sanitation status in India (coverage, financing and emerging concerns). Available from: www.wateraidindia.in [Accessed 22 Jun 2020].
  • Wilby, R.L. and Dawson, C.W., 2013. The statistical downscaling model: insights from one decade of application. International Journal of Climatology, 33 (7), 1707–1719. doi:10.1002/joc.3544
  • Yates, D., et al., 2005. WEAP21—A demand-, priority-, and preference-driven water planning model. Water International, 30 (4), 501–512. doi:10.1080/02508060508691894
  • You, Q., et al., 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. Journal of Geophysical Research, 113, D07101. doi:10.1029/2007jd009389

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.