189
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of transpiration of differently aged apple orchards on the Loess Plateau of China at multiple temporal scales

, , , &
Pages 979-990 | Received 21 Nov 2020, Accepted 03 Mar 2021, Published online: 04 May 2021

References

  • Allen, R.G., et al., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. Rome: FAO, FAO Irrigation and Drainage, Paper no. 56.
  • Bréda, N., et al., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63 (6), 625–644. doi:10.1051/forest:2006042.
  • Cammalleri, C., et al., 2013. Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard. Agricultural Water Management, 120, 89–97. doi:10.1016/j.agwat.2012.10.003.
  • Čermák, J., et al., 1995. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site. Journal of Hydrology, 168, 17–27. doi:10.1016/0022-1694(94)02657-W.
  • Chang, X.X., Zhao, W.Z., and He, Z.B., 2014. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agricultural & Forest Meteorology, 187, 14–21. doi:10.1016/j.agrformet.2013.11.004.
  • Chen, D.Y., et al., 2014. Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China. Agricultural Water Management, 136, 23–33. doi:10.1016/j.agwat.2014.01.001.
  • Chen, H.S., Shao, M.A., and Li, Y.Y., 2008. The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China. Journal of Hydrology, 360, 242–251. doi:10.1016/j.jhydrol.2008.07.037.
  • Chirino, E., Bellot, J., and Sánchez, J.R., 2011. Daily sap flow rate as an indicator of drought avoidance mechanisms in five Mediterranean perennial species in semi-arid southeastern Spain. Trees, 25 (4), 593–606. doi:10.1007/s00468-010-0536-4.
  • Clearwater, M.J., et al., 1999. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 19, 681–687. doi:10.1093/treephys/19.10.681.
  • Cohen, Y., et al., 2007. Variations in the radial gradient of sap velocity in trunks of forest and fruit trees. Plant and Soil, 305 (1–2), 49–59. doi:10.1007/s11104-007-9351-0.
  • Dang, H.Z., et al., 2019. Response of sap flow rate of apple trees to environmental factors in Loess Plateau of western Shanxi Province, China. Chinese Journal of Applied Ecology, 30 (3), 823–831. doi:10.13287/j.1001-9332.201903.015.
  • Dawson, T.E., et al., 2007. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 27, 561–575. doi:10.1093/treephys/27.4.561.
  • Delzon, S., et al., 2004. Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology, 24, 1285–1293. doi:10.1093/treephys/24.11.1285.
  • Deng, L., Liu, G.B., and Shangguan, Z.P., 2014. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: a synthesis. Global Change Biology, 20 (11), 3544–3556. doi:10.1111/gcb.12508.
  • Dunham, S.M., et al., 2008. Partitioning variation in Douglas-fir xylem properties among multiple scales via a Bayesian hierarchical model. Tree Physiology, 28, 1017–1024. doi:10.1093/treephys/28.7.1017.
  • Dunn, G.M. and Connor, D.J., 1993. An analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age. Tree Physiology, 13 (4), 321–336. doi:10.1093/treephys/13.4.321.
  • Fang, S.M., Zhao, C.Y., and Jian, S.Q., 2016. Canopy transpiration of Pinus tabulaeformis plantation forest in the Loess Plateau region of China. Environmental Earth Sciences, 75, 376. doi:10.1007/s12665-016-5291-4.
  • Ford, C.R., et al., 2005. Modeling canopy transpiration using time series analysis: a case study illustrating the effect of soil moisture deficit on Pinus taeda. Agricultural & Forest Meteorology, 130, 163–175. doi:10.1016/j.agrformet.2005.03.004.
  • Forrester, D.I., Collopy, J.J., and Morris, J.D., 2010. Transpiration along an age series of Eucalyptus globulus plantations in southeastern Australia. Forest Ecology & Management, 259, 1754–1760. doi:10.1016/j.foreco.2009.04.023.
  • Gaines, K.P., et al., 2016. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania. Tree Physiology, 36 (4), 444–458. doi:10.1093/treephys/tpv113.
  • Gong, D.Z., et al., 2007. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Hydrological Processes, 21 (7), 931–938. doi:10.1002/hyp.6284.
  • Good, S.P., Noone, D., and Bowen, G., 2015. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349 (6244), 175–177. doi:10.1126/science.aaa5931.
  • Granier, A., 1985. A new method of sap flow measurement in tree stems. Annals of Forest Science, 42 (2), 193–200. doi:10.1051/forest:19850204.
  • Granier, A., 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309–320. doi:10.1093/treephys/3.4.309.
  • Green, S.R. and Clothier, B.E., 1988. Water use of kiwifruit vines and apple trees by the heat-pulse technique. Journal of Experimental Botany, 39 (198), 115–123. doi:10.1093/jxb/39.1.115.
  • Green, S.R., Clothier, B.E., and McLeod, D.J., 1997. The response of sap flow in apple roots to localised irrigation. Agricultural Water Management, 33, 63–78. doi:10.1016/S0378-3774(96)01277-2.
  • Guo, W.H., et al., 2010. Effects of water stress on water use efficiency and water balance components of Hippophae rhamnoides and Caragana intermedia in the soil–plant–atmosphere continuum. Agroforestry Systems, 80 (3), 423–435. doi:10.1007/s10457-010-9337-4.
  • Hu, Z.M., et al., 2008. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology,14 (7), 1609–1619. doi:10.1111/j.1365-2486.2008.01582.x
  • Huang, L.M. and Shao, M.A., 2019. Advances and perspectives on soil water research in China’s Loess Plateau. Earth-Science Reviews, 199, 102962. doi:10.1016/j.earscirev.2019.102962.
  • Huber, K., et al., 2014. Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures. Plant and Soil, 384 (1–2), 93–112. doi:10.1007/s11104-014-2188-4.
  • Huxman, T.E., et al., 2005. Ecohydrological implications of woody plant encroachment. Ecology, 86 (2), 308–319. doi:10.1890/03-0583.
  • Jia, X.X., et al., 2019. Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agriculture Ecosystems & Environment, 273, 25–35. doi:10.1016/j.agee.2018.12.008.
  • Jiao, L., et al., 2016. Comparison of transpiration between different aged black locust (Robinia pseudoacacia) trees on the semi-arid Loess Plateau, China. Journal of Arid Land, 8 (4), 604–617. doi:10.1007/s40333-016-0047-2.
  • Kumagai, T., et al., 2007. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed. Tree Physiology, 27, 161–168. doi:10.1093/treephys/27.2.161.
  • Lachenbruch, B. and McCulloh, K.A., 2014. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist, 204 (4), 747–764. doi:10.1111/nph.13035.
  • Li, H., et al., 2019a. Deep soil water extraction by apple sequesters organic carbon via root biomass rather than altering soil organic carbon content. Science of the Total Environment, 670, 662–671. doi:10.1016/j.scitotenv.2019.03.267.
  • Li, H.B., et al., 2008. Research on sap flow velocity of red Fuji apple trees by heat pulse probe method. Acta Agriculturae Boreali-Occidentalis Sinica, 5, 244–247.
  • Li, H.J., et al., 2019b. Water mining from the deep critical zone by apple treesgrowing on loess. Hydrological Processes, 33, 320–327. doi:10.1002/hyp.13346.
  • Liu, C.W., et al., 2012. Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China. Agricultural Water Management, 104, 193–202. doi:10.1016/j.agwat.2011.12.014.
  • Méndez-Toribio, M., et al., 2016. Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. Journal of Vegetation Science, 27 (6), 1094–1103. doi:10.1111/jvs.12455.
  • Monteith, J.L., 1981. Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107, 1–27. doi:10.1002/qj.49710745102.
  • Nicolas, E., et al., 2005. Evaluation of transpiration in adult apricot trees from sap flow measurements. Agricultural Water Management, 72 (2), 131–145. doi:10.1016/j.agwat.2004.09.008.
  • O’Brien, J.J., Oberbauer, S.F., and Clark, D.B., 2004. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant Cell Environment, 27, 551–567. doi:10.1111/j.1365-3040.2003.01160.x.
  • Oren, R. and Pataki, D.E., 2001. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia, 127 (4), 549–559. doi:10.1007/s004420000622.
  • Otieno, D., et al., 2017. Spatial heterogeneity in stand characteristics alters water use patterns of mountain forests. Agricultural & Forest Meteorology, 236, 78–86. doi:10.1016/j.agrformet.2017.01.007.
  • Parker, M.M. and Van Lear, D.H., 1996. Soil heterogeneity and root distribution of mature loblolly pine stands in piedmont soils. Soil Science Society of America Journal, 60, 1920–1925. doi:10.2136/sssaj1996.03615995006000060043x.
  • Peng, S.Z. and Li, Z., 2018. Incorporation of potential natural vegetation into revegetation programmes for sustainable land management. Land Degradation & Developmen, 29, 3503–3511. doi:10.1002/ldr.3124.
  • Peng, X.P., et al., 2014. Discrepancy of sap flow in Salix matsudana grown under different soil textures in the water-wind erosion crisscross region on the Loess Plateau. Plant and Soil, 390 (1–2), 383–399. doi:10.1007/s11104-014-2333-0.
  • Penman, H.L., 1948. Natural evaporation from open water, hare soil and grass. Proceedings of the Royal Society of London, 193 (1032), 120–145. doi:10.1098/rspa.1948.0037.
  • Phillips, N., et al., 2002. Canopy and hydraulic conductance in young, mature and old Douglas-fir trees. Tree Physiology, 22, 205–211. doi:10.1093/treephys/22.2-3.205.
  • Qiu, G.Y., Li, C., and Yan, C.H., 2015. Characteristics of soil evaporation, plant transpiration and water budget of Nitraria dune in the arid Northwest China. Agricultural & Forest Meteorology, 203, 107–117. doi:10.1016/j.agrformet.2015.01.006.
  • Rana, G., et al., 2019. Field scale recalibration of the sap flow thermal dissipation method in a Mediterranean vineyard. Agricultural & Forest Meteorology, 269–270, 169–179. doi:10.1016/j.agrformet.2019.02.018.
  • Rogiers, S.Y., et al., 2011. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiology, 32 (3), 249–261. doi:10.1093/treephys/tpr131.
  • Röll, A., et al., 2015. Transpiration in an oil palm landscape: effects of palm age. Biogeosciences, 12, 5619–5633. doi:10.5194/bg-12-5619-2015.
  • Rothfuss, Y., et al., 2010. Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrological Process, 24 (22), 3177–3194. doi:10.1002/hyp.7743.
  • Song, X.L., et al., 2018. Soil water and root distribution of apple tree (Malus pumila Mill) stands in relation to stand age and rainwater collection and infiltration system (RWCI) in a hilly region of the Loess Plateau, China. Catena, 170, 324–334. doi:10.1016/j.catena.2018.06.026.
  • Sperry, J.S., Perry, A.H., and Sullivan, J.E.M., 1991. Pit membrane degradation and air-embolism formation in ageing xylem vessels of populus tremuloides michx. Journal of Experimental Botany, 42 (244), 1399–1406. doi:10.1093/jxb/42.11.1399.
  • Sperry, J.S. and Tyree, M.T., 1988. Mechanism of water stress-induced xylem embolism. Plant Physiology, 88, 581–587. doi:10.1104/pp.88.3.581.
  • Steppe, K., et al., 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural & Forest Meteorology, 150 (7–8), 1046–1056. doi:10.1016/j.agrformet.2010.04.004.
  • Suo, G.D., et al., 2019. Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the Loess Plateau of China. Scientia Hortic-Amsterdam, 246, 643–651. doi:10.1016/j.scienta.2018.11.028.
  • Tian, A., et al., 2019. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China. Journal of Hydrology, 571, 503–515. doi:10.1016/j.jhydrol.2019.02.004.
  • Tie, Q., et al., 2017. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agricultural & Forest Meteorology, 240–241, 46–57. doi:10.1016/j.agrformet.2017.03.018.
  • Tognetti, R., et al., 2004. Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. Plant and Soil, 263, 249–264. doi:10.1023/B:PLSO.0000047738.96931.91.
  • Wang, D. and Wang, L., 2017. Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China. Agricultural Water Management, 191, 1–15. doi:10.1016/j.agwat.2017.05.010.
  • Wang, S., et al., 2019. Discrepancy in tree transpiration of Salix matsudana, Populus simonii under distinct soil, topography conditions in an ecological rehabilitation area on the Northern Loess Plateau. Forest Ecology & Management, 432, 675–685. doi:10.1016/j.foreco.2018.10.011.
  • Wang, X.P., et al., 2009. Water balance change for a re-vegetated xerophyte shrub area/Changement du bilan hydrique d’une zone replantée d’arbustes xérophiles. Hydrological Sciences Journal, 49, 283–295.
  • Wang, Y.H., et al., 2017. The spatiotemporal variation of tree cover in the Loess Plateau of China after the ‘Grain for Green’ project. Sustainability, 9 (5), 739–753. doi:10.3390/su9050739.
  • Wei, Z.W., et al., 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44, 2792–2801. doi:10.1002/2016GL072235.
  • Wu, W.J., et al., 2021. Precipitation dominates the transpiration of both the economic forest (Malus pumila) and ecological forest (Robinia pseudoacacia) on the Loess Plateau after about 15 years of water depletion in deep soil. Agricultural and Forest Meteorology, 297, 108244. doi:10.1016/j.agrformet.2020.108244.
  • Xu, X.Y., et al., 2017. Sap flow of irrigated Populus alba var. pyramidalis and its relationship with environmental factors and leaf area index in an arid region of Northwest China. Journal of Forest Research, 16 (2), 144–152. doi:10.1007/s10310-010-0220-y.
  • Zhang, J., et al., 2016. The relationship between sap flow velocity and environmental factors of the 19a apple trees on the Loess Plateau at different time scales. Scientia Agricultura Sinica, 49 (13), 2583–2592.
  • Zhang, L., Dawes, W.R., and Walker, G.R., 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37 (3), 701–708. doi:10.1029/2000WR900325.
  • Zhao, J., et al., 2018. Soil moisture response to rainfall on the Chinese Loess Plateau after a long-term vegetation rehabilitation. Hydrological Process, 32 (12), 1738–1754. doi:10.1002/hyp.13143.
  • Zhao, W., Chang, X., and Zhang, Z., 2009. Transpiration of a Linze jujube orchard in an arid region of China. Hydrological Process, 23 (10), 1461–1470. doi:10.1002/hyp.7272.
  • Zimmermann, R., et al., 2000. Canopy transpiration in a chronosequence of Central Siberian pine forests. Global Change Biology, 6, 25–37. doi:10.1046/j.1365-2486.2000.00289.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.