265
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modelling surface water dynamics in an Amazonian sub-basin: impacts of hydraulic geometry refinement

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1004-1014 | Received 21 Oct 2020, Accepted 03 Mar 2021, Published online: 12 May 2021

References

  • Adeyemi, O., Olutoyin, F., and Olumide, O., 2020. Downstream hydraulic geometry across headwater channels in Upper Ogun River Basin, Southwestern Nigeria. African Geographical Review, 39 (4), 345–360. doi:10.1080/19376812.2020.1720756
  • Alsdorf, D., et al., 2007. Spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters, 34 (8). doi:10.1029/2007GL029447
  • Andreadis, K.M., Brinkerhoff, C.B., and Gleason, C.J., 2020. Constraining the assimilation of SWOT observations with hydraulic geometry relations. Water Resources Research, 49 (10), e2019WR026611.
  • Andreadis, K.M., Schumann, G.J.P., and Pavelsky, T., 2013. A simple global river bankfull width and depth database. Water Resources Research, 49 (10), 7164–7168. doi:10.1002/wrcr.20440
  • Bieger, K., et al., 2015. Development and evaluation of bankfull hydraulic geometry relationships for the physiographic regions of the United States. Journal of the American Water Resources Association, 51 (3), 842–858. doi:10.1111/jawr.12282
  • Bravo, J.M., et al., 2012. Coupled hydrologic-hydraulic modeling of the Upper Paraguay River basin. Journal of Hydrologic Engineering, 17 (5), 635–646. doi:10.1061/(ASCE)HE.1943-5584.0000494
  • Coe, M.T., Costa, M.H., and Howard, E.A., 2008. Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrological Processes: An International Journal, 22 (14), 2542–2553. doi:10.1002/hyp.6850
  • Collischonn, W., 2001. Hydrological simulation of large basins (in Portuguese). Thesis (Doctorate in Water Resources and Environmental Sanitation). Porto Alegre, RS: Universidade do Rio Grande do Sul.
  • Dalagnol, R., et al., 2017. Assessment of climate change impacts on water resources of the Purus Basin in the southwestern Amazon. Acta Amazonica, 47 (3), 213–226. doi:10.1590/1809-4392201601993
  • Dunne, T. and Leopold, L.B., 1978. Water in environmental planning. San Francisco: W. H. Freeman.
  • Durand, M., et al., 2016. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resources Research, 52 (6), 4527–4549. doi:10.1002/2015WR018434
  • Espinoza Villar, J.C., et al., 2009. Spatio‐temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). International Journal of Climatology: A Journal of the Royal Meteorological Society, 29 (11), 1574–1594.
  • Fagundes, H.D.O., et al., 2017. Preliminary hydrosedimentological simulation in the Doce river Basin with the MGB SED model (in Portuguese). In: II Congresso Internacional de Hidrossedimentologia (2.: 2017: Foz do Iguaçu). Anais, 1–8. Foz do Iguaçu: Interciência.
  • Fan, F.M., et al., 2016. Flood forecasting on the Tocantins River using ensemble rainfall forecasts and real‐time satellite rainfall estimates. Journal of Flood Risk Management, 9 (3), 278–288. doi:10.1111/jfr3.12177
  • Filizola, N., et al., 2011. The flow of suspended matter in the Western Amazon as a marker of fluvial dynamics (in Portuguese). Manaus, Ed. Purus River: waters, territory and society in the South-Western Amazon (in Portuguese). Chapter 6.
  • Fleischmann, A., Paiva, R., and Collischonn, W., 2019. Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison. Journal of Hydrology X, 3, 100027. doi:10.1016/j.hydroa.2019.100027
  • Frasson, R. P. D. M., Pavelsky, T. M., Fonstad, M. A., Durand, M. T., Allen, G. H., Schumann, G., Lion, C., Beighley, R. E., and Yang, X., 2019. Global relationships between river width, slope, catchment area, meander wavelength, sinuosity, and discharge. Geophysical Research Letters, 46(6), 3252–3262. doi:10.1029/2019GL082027
  • Getirana, A.C., 2010. Integrating spatial altimetry data into the automatic calibration of hydrological models. Journal of Hydrology, 387 (3–4), 244–255. doi:10.1016/j.jhydrol.2010.04.013
  • Grimaldi, S., et al., 2018. Effective representation of river geometry in hydraulic flood forecast models. Water Resources Research, 54 (2), 1031–1057. doi:10.1002/2017WR021765
  • Knoben, W.J., Freer, J.E., and Woods, R.A., 2019. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23 (10), 4323–4331. doi:10.5194/hess-23-4323-2019
  • Knoben, W.J., Woods, R.A., and Freer, J.E., 2018. A quantitative hydrological climate classification evaluated with independent streamflow data. Water Resources Research, 54 (7), 5088–5109. doi:10.1029/2018WR022913
  • Latuf, M. and Amaral, E., 2016. Assessment of suspended sediment discharge in the Purus River basin, Brazil. International Journal of River Basin Management, 14 (4), 413–429. doi:10.1080/15715124.2016.1215322
  • Leopold, L.B. and Maddock, T., 1953. The hydraulic geometry of stream channels and some physiographic implications. Vol. 252. Washington, DC: US Government Printing Office.
  • Luo, X., et al., 2017. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1. 0: impacts of geomorphological parameters and river flow representation. Geosciences Model Development, 10 (3), 1233–1259. doi:10.5194/gmd-10-1233-2017
  • Maechler, M., et al., 2019. Finding groups in data: cluster analysis extended. Rousseeuw et. R Packag. version 2.0, 6.
  • Meade, R.H., et al., 1991. Backwater effects in the Amazon River basin of Brazil. Environmental Geology and Water Sciences, 18 (2), 105–114. doi:10.1007/BF01704664
  • Morel, M., et al., 2020. Intercontinental predictions of river hydraulic geometry from catchment physical characteristics. Journal of Hydrology, 582, 124292. doi:10.1016/j.jhydrol.2019.124292
  • Moriasi, D.N., et al., 2015. Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE, 58 (6), 1763–1785.
  • Muste, M., Ho, H.C., and Kim, D., 2011. Considerations on direct stream flow measurements using video imagery: outlook and research needs. Journal of Hydro-environment Research, 5 (4), 289–300. doi:10.1016/j.jher.2010.11.002
  • Naghettini, M. and Pinto, É.J.D.A., 2007. Statistical hydrology (in Portuguese). Brazil: CPRM.
  • Paiva, R.C., Collischonn, W., and Tucci, C.E., 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology, 406 (3–4), 170–181. doi:10.1016/j.jhydrol.2011.06.007
  • Paiva, R.C.D., et al., 2013. Large‐scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resources Research, 49 (3), 1226–1243. doi:10.1002/wrcr.20067
  • Paiva, R.D., 2009. Hydrological and hydrodynamic modeling of large basins. Study case: Solimões river basin (in Portuguese). MSc dissertation. Porto Alegre, Brazil: Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, 182.
  • Paiva, R.D., 2012. Hydrologie du bassin amazonien: compréhension et prévision fondées sur la modélisation hydrologique-hydrodynamique et la télédétection. Doctoral dissertation. Brasil: Université de Toulouse, Université Toulouse III-Paul Sabatier; Universidade Federal do Rio Grande do Sul.
  • Peel, M.C., Finlayson, B.L., and McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4 (2), 439–473.
  • Pontes, P.R.M., et al., 2017. MGB IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environmental Modelling Software, 94, 1–20. doi:10.1016/j.envsoft.2017.03.029
  • R Core Team, 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rennó, C.D., et al., 2008. HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in Amazonia. Remote Sensing of Environment, 112 (9), 3469–3481. doi:10.1016/j.rse.2008.03.018
  • Ríos-Villamizar, E.A., et al., 2017. Surface water quality and deforestation of the Purus river basin, Brazilian Amazon. International Aquatic Research, 9 (1), 81–88. doi:10.1007/s40071-016-0150-1
  • Siqueira, V.A., et al., 2016. Ensemble flood forecasting based on operational forecasts of the regional Eta EPS in the Taquari-Antas basin. Revista Brasileira de Recursos Hídricos, 21 (3), 587–602. doi:10.1590/2318-0331.011616004
  • Siqueira, V.A., et al., 2018. Toward continental hydrologic–hydrodynamic modeling in South America. Hydrology and Earth System Sciences, 22 (9), 4815–4842. doi:10.5194/hess-22-4815-2018
  • Sousa, H.T., et al., 2009. SISCAH 1.0: computational system for hydrological analysis (in Portuguese). Brasília, DF: ANA. Viçosa, MG: UFV.
  • Sutanudjaja, E.H., et al., 2018. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11 (6), 2429–2453. doi:10.5194/gmd-11-2429-2018
  • Yamazaki, D., et al., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research, 47 (4), 4. doi:10.1029/2010WR009726

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.