275
Views
5
CrossRef citations to date
0
Altmetric
Research Article

A regional ANN-based model to estimate suspended sediment concentrations in ungauged heterogeneous basins

ORCID Icon & ORCID Icon
Pages 1222-1232 | Received 01 Oct 2020, Accepted 09 Mar 2021, Published online: 07 Jun 2021

References

  • Adnan, R.M., et al., 2019. Prediction of suspended sediment load using data-driven models. Water, 11 (10), 2060. doi:10.3390/w11102060
  • Afan, H.A., et al., 2016. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction. Journal of Hydrology, 541, 902–913. doi:10.1016/j.jhydrol.2016.07.048
  • Asce, 2000. Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5 (2), 115–123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
  • Atieh, M., et al., 2015. Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins. Journal of Hydrology, 531, 1095–1107. doi:10.1016/j.jhydrol.2015.11.008
  • Bayram, A., Kankal, M., and Önsoy, H., 2012. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Environmental Monitoring and Assessment, 184 (7), 4355–4365. doi:10.1007/s10661-011-2269-2
  • Bayram, A., et al., 2014. Prediction of suspended sediment concentration from water quality variables. Neural Computing and Applications, 24 (5), 1079–1087. doi:10.1007/s00521-012-1333-3
  • Bravo, J.M., et al., 2012. Coupled hydrologic-hydraulic modeling of the Upper Paraguay River Basin. Journal of Hydrologic Engineering, 17 (5), 635–646. doi:10.1061/(ASCE)HE.1943-5584.0000494
  • Burrough, P.A. and McDonnell, R.A., 1998. Principles of geographical information systems. 3rd ed. New York: Oxford University Press.
  • Embrapa, 2015. Monitoramento das alterações da cobertura vegetal e uso do Solo na Bacia do Alto Paraguai – Porção Brasileira – analysis period: 2012 to 2014 [online]. Available from: https://d3nehc6yl9qzo4.cloudfront.net/downloads/publicacao_bap_sumarioexecutivo_2012_2014_web.pdf [Accessed 2 Apr 2019].
  • Fagundes, H.O., et al., 2020. Sediment modeling of a large-scale basin supported by remote sensing and in-situ observations. Catena, 190 (August 2019), 104535. doi:10.1016/j.catena.2020.104535
  • Freeman, J.A. and Skapura, D.M., 1991. Neural networks: algorithms, applications and programming techniques. California: Addison-Wesley Publishing Company.
  • Gebremicael, T.G., et al., 2017. Comparison and validation of eight satellite rainfall products over the rugged topography of Tekeze-Atbara Basin at different spatial and temporal scales. Hydrology and Earth System Sciences Discussions, [preprint], 1–31. doi:10.5194/hess-2017-504.
  • Haimann, M., et al., 2014. An integrated suspended sediment transport monitoring and analysis concept. International Journal of Sediment Research, 29 (2), 135–148. doi:10.1016/S1001-6279(14)60030-5
  • Harrington, S.T. and Harrington, J.R., 2013. An assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland. Geomorphology, 185, 27–38. doi:10.1016/j.geomorph.2012.12.002
  • Hecht-Nielsen, R., 1990. Neurocomputing. Massachusetts: Addison-Wesley Publishing Company.
  • Heng, S. and Suetsugi, T., 2013. Using artificial neural network to estimate sediment load in ungauged catchments of the Tonle Sap River Basin, Cambodia. Journal of Water Resource and Protection, 05 (2), 111–123. doi:10.4236/jwarp.2013.52013
  • Hornik, K., Stinchcombe, M., and White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2 (5), 359–366. doi:10.1016/0893-6080(89)90020-8
  • Jain, S.K., 2001. Development of integrated sediment rating curves using ANNs. Journal of Hydraulic Engineering, 127 (1), 30–37. doi:10.1061/(ASCE)0733-9429(2001)127:1(30)
  • Khosravi, K., et al., 2018. Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. Journal of Hydrology, 567, 165–179. doi:10.1016/j.jhydrol.2018.10.015
  • Kisi, O., et al., 2012. Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58. doi:10.1016/j.jhydrol.2012.05.031
  • Lafdani, E.K., Moghaddam Nia, A., and Ahmadi, A., 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50–62. doi:10.1016/j.jhydrol.2012.11.048
  • Moore, R.J., 1982. Transfer functions, noise predictors and the forecasting of flood events in realtime. In: S. Vp, ed. Statistical analysis of rainfall and runoff. Litleton: Water Resources Publications, 229–250.
  • Moriasi, D.N., et al., 2015. Hydrologic and water quality models: performance measures and evaluation criteria. American Society of Agricultural and Biological Engineers, 58 (6), 1763–1785.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nhu, V.-H., et al., 2020. Monthly suspended sediment load prediction using artificial intelligence: testing of a new random subspace method. Hydrological Sciences Journal, 65 (12), 2116–2127. doi:10.1080/02626667.2020.1754419
  • Pektas, A.O. and Cigizoglu, H.K., 2017. Investigating the extrapolation performance of neural network models in suspended sediment data. Hydrological Sciences Journal, 62 (10), 1694–1703. doi:10.1080/02626667.2017.1349316
  • Rozante, J.R., et al., 2010. Combining TRMM and surface observations of precipitation: technique and validation over South America. American Meteorological Society, 25 (3), 885–894.
  • Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning representations by back-propagating errors. Nature, 323 (6088), 533–536. doi:10.1038/323533a0
  • Salih, S.Q., et al., 2020. River suspended sediment load prediction based on river discharge information: application of newly developed data mining models. Hydrological Sciences Journal, 65 (4), 624–637. doi:10.1080/02626667.2019.1703186
  • Santos, H.G., et al., 2018. Brazilian soil classification system [online]. Available from: https://www.embrapa.br/solos/busca-de-publicacoes/-/publicacao/1094001/brazilian-soil-classification-system [Accessed 7 Apr 2019].
  • Sari, V., Castro, N., and Kobiyama, M., 2015. Estimativa da concentração de sedimentos suspensos com sensores ópticos: revisão/Estimation of the suspended sediment concentration with optical sensors: review. Revista Brasileira De Recursos Hídricos, 20 (4), 816–836. doi:10.21168/rbrh.v20n4.p816-836
  • Sari, V., Castro, N.M.D.R., and Pedrollo, O.C., 2017. Estimate of suspended sediment concentration from monitored data of turbidity and water level using artificial neural networks. Water Resources Management, 31 (15), 4909–4923. doi:10.1007/s11269-017-1785-4
  • Shellenbarger, G.G., Wright, S.A., and Schoellhamer, D.H., 2013. A sediment budget for the southern reach in San Francisco Bay, CA: implications for habitat restoration. Marine Geology, 345, 281–293. doi:10.1016/j.margeo.2013.05.007
  • Singh, A., et al., 2013. Comparison of artificial neural network models for sediment yield prediction at single gauging station of watershed in Eastern India. Journal of Hydrologic Engineering, 18 (1), 115–120. doi:10.1061/(ASCE)HE.1943-5584.0000601
  • Tananaev, N.I. and Debolskiy, M.V., 2014. Turbidity observations in sediment flux studies: examples from Russian rivers in cold environments. Geomorphology, 218, 63–71. doi:10.1016/j.geomorph.2013.09.031
  • Tayfur, G., 2002. Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal, 47 (6), 879–892. doi:10.1080/02626660209492997
  • Teixeira, L.C., et al., 2020. Artificial neural network and fuzzy inference system models for forecasting suspended sediment and turbidity in basins at different scales. Water Resources Management, 34 (11), 3709–3723. doi:10.1007/s11269-020-02647-9
  • WMO, 2008. Guide to meteorological instruments and methods of observation. Geneva: Chairperson.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.