310
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Water and energy balance of canopy interception as evidence of splash droplet evaporation hypothesis

ORCID Icon
Pages 1248-1264 | Received 26 Jun 2020, Accepted 18 Mar 2021, Published online: 10 Jun 2021

References

  • Allen, S.T., et al., 2017. The role of stable isotopes in understanding rainfall interception processes: a review. WIREs Water, 4, e1187. doi:10.1002/wat2.1187
  • Beard, K.V. and Pruppacher, H.R., 1971. A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. Journal of Atmospheric Sciences, 28 (8), 1455–1464. doi:10.1175/1520-0469(1971)028<1455:AWTIOT>2.0.CO;2
  • Bruijnzeel, L.A., Mulligan, M., and Scatena, F.N., 2011. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes, 25 (3), 465–498. doi:10.1002/hyp.7974
  • Carlyle-Moses, D.E. and Price, A.G., 1999. An evaluation of the Gash interception model in a northern hardwood stand. Journal of Hydrology, 214 (1–4), 103–110. doi:10.1016/S0022-1694(98)00274-1
  • Deguchi, A., Hattori, S., and Park, H., 2006. The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology, 319 (1–4), 80–102. doi:10.1016/j.jhydrol.2005.06.005
  • Dunin, F.X., O’Loughlin, E.M., and Reyenga, W., 1988. Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrological Processes, 2 (4), 315–329. doi:10.1002/hyp.3360020403
  • Dunkerley, D.L., 2009. Evaporation of impact water droplets in interception processes: historical precedence of the hypothesis and a brief literature overview. Journal of Hydrology, 376 (3–4), 599–604. doi:10.1016/j.jhydrol.2009.08.004
  • Fan, Y., et al., 2019. Reconciling canopy interception parameterization and rainfall forcing frequency in the community land model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. Journal of Advances in Modeling Earth Systems, 11 (3), 732–751. doi:10.1029/2018MS001490
  • Gash, J.H.C., 1979. An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society, 105 (443), 43–55. doi:10.1002/qj.49710544304
  • Gash, J.H.C., Lloyd, C.R., and Lachaud, G., 1995. Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170 (1–4), 79–86. doi:10.1016/0022-1694(95)02697-N
  • Ghimire, C.P., et al., 2012. Rainfall interception by natural and planted forests in the Middle Mountains of Central Nepal. Journal of Hydrology, 475, 270–280. doi:10.1016/j.jhydrol.2012.09.051
  • Ghimire, C.P., et al., 2017. Measurement and modeling of rainfall interception by two differently aged secondary forests in upland eastern Madagascar. Journal of Hydrology, 545, 212–225. doi:10.1016/j.jhydrol.2016.10.032
  • Hall, R.L., 2003. Interception loss as a function of rainfall and forest types: stochastic modelling for tropical canopies revisited. Journal of Hydrology, 280 (1–4), 1–12. doi:10.1016/S0022-1694(03)00076-3
  • Hashino, M., Yao, H., and Tamura, T., 2010. Micro-droplet flux in forest and its contribution to interception loss of rainfall – theoretical study and field experiment. Journal of Water Resource and Protection, 2 (10), 872–879. doi:10.4236/jwarp.2010.210104
  • Hattori, S., 1985. Explanation on derivation process of equations to estimate evapotranspiration and problems on the application to forest stand. Bulletin of the Forestry and Forest Products Research Institute, 332, 139–165. in Japanese.
  • Holterman, H.J., 2003. Kinetics and evaporation of water drops in air. Wageningen, The Netherlands, IMAG Report No. 2003-12.
  • Hörmann, G., et al., 1996. Calculation and simulation of wind controlled canopy interception of a beechforest in northern Germany. Agricultural and Forest Meteorology, 79 (3), 131–148. doi:10.1016/0168-1923(95)02275-9
  • Igawa, M., Tsutsumi, Y., and Okochi, H., 2002. High frequency and large deposition of acid fog on high elevation. Environmental Science and Technology, 32 (1), 1–6. doi:10.1021/es0105358
  • Janeau, J.L., Grellier, S., and Podwojewski, P., 2015. Influence of rainfall interception by endemic plants versus short cycle crops on water infiltration in high altitude ecosystems of Ecuador. Hydrology Research, 46 (6), 1008–1018. doi:10.2166/nh.2015.203
  • Jeong, S., Otsuki, K., and Farahnak, M., 2019. Relationship between stand structures and rainfall partitioning in dense unmanaged Japanese cypress plantations. Journal of Agricultural Meteorology, 75 (2), 92–102. doi:10.2480/agrmet.D-18-00030
  • Jiménez-Rodríguez, C.D., et al., 2021. Vapor plumes in a tropical wet forest: spotting the invisible evaporation. Hydrology and Earth System Sciences, 25 (2), 619–635. doi:10.5194/hess-25-619-2021,2021
  • Kobayashi, T., et al., 2001. Cloud water deposition to forest canopies of Cryptomeria japonica at Mt. Rokko. Water, Air, and Soil Pollution, 130 (1/4), 601–606. doi:10.1023/A:1013859403320
  • Komatsu, H., et al., 2008. Relationship between annual rainfall and interception ratio for forests across Japan. Forest Ecology and Management, 256 (5), 1189–1197. doi:10.1016/j.foreco.2008.06.036
  • Kondo, J., et al., 1992. Shinrin niokeru kouuno shadan jyohastu no moderu keisan (A study on the modelling of rainfall interception in forests). Tenki, 39 (3), 159–168. (in Japanese). https://www.metsoc.jp/tenki/pdf/1992/1992_03_0159.pdf.
  • Levia, D.F., et al., 2019. Throughfall partitioning by trees. Hydrological Processes, 33 (12), 1698–1708. doi:10.1002/hyp.13432
  • Liu, Y. and Zhao, L., 2020. Effect of plant morphological traits on throughfall, soil moisture, and runoff. Water, 12 (6), 1731. doi:10.3390/w12061731
  • Makarieva, A.M., et al., 2013. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmospheric Chemistry and Physics, 13 (2), 1039–1056. doi:10.5194/acp-13-1039-2013
  • Makarieva, A.M. and Gorshkov, V.G., 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11 (2), 1013–1033. doi:10.5194/hess-11-1013-2007
  • Monteith, J.L., 1965. Evaporation and the environment. Symposium of the Society of Experimental Biology, 19, 205–234.
  • Murakami, S., 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology, 319 (1–4), 72–82. doi:10.1016/j.jhydrol.2005.07.002
  • Murakami, S., 2007. Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. Journal of Hydrology, 342 (3–4), 305–319. doi:10.1016/j.jhydrol.2007.05.032
  • Murakami, S. and Toba, T., 2013. Experimental study on canopy interception using artificial Christmas trees to evaluate evaporation during rainfall and the effects of tree height and thinning. Hydrological Research Letters, 7 (4), 91–96. doi:10.3178/hrl.7.91
  • Návar, J., 2020. Modeling rainfall interception loss components of forests. Journal of Hydrology, 584, 124449. doi:10.1016/j.jhydrol.2019.124449
  • Park, H.T., Hattori, S., and Kang, H.M., 2000. Seasonal and inter-plot variations of stemflow, throughfall and interception loss in two deciduous broad-leaved forests. Journal of Japanese Society of Hydrology and Water Resources, 13 (1), 17–30. doi:10.3178/jjshwr.13.17
  • Pearce, A.J., Rowe, L.K., and Stewart, J.B., 1980. Nighttime, wet canopy evaporation rates and the water balance of an evergreen mixed forest. Water Resources Research, 16 (5), 955–959. doi:10.1029/WR016i005p00955
  • Price, A.G. and Carlyle-Moses, D.E., 2003. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agricultural Meteorology, 119 (1–2), 69–85. doi:10.1016/S0168-1923(03)00117-5
  • Rutter, A., et al., 1971. A predictive model of rainfall interception in forest: i. Derivation of the model from observation in a plantation of Corsican pine. Agricultural Meteorology, 9, 367–384. doi:10.1016/0002-1571(71)90034-3
  • Saito, T., et al., 2013. Forest canopy interception loss exceeds wet canopy evaporation in Japanese cypress (Hinoki) and Japanese cedar (Sugi) plantations. Journal of Hydrology, 507, 287–299. doi:10.1016/j.jhydrol.2013.09.053
  • Schellekens, J., et al., 1999. Modelling rainfall interception by a lowland tropical rain forest in northern Puerto Rico. Journal of Hydrology, 225 (3–4), 168–184. doi:10.1016/S0022-1694(99)00157-2
  • Seela, B.K., et al., 2018. Raindrop size distribution characteristics of summer and winter season rainfall over North Taiwan. Journal of Geophysical Research, 123 (20), 11602–11624. doi:10.1029/2018JD028307
  • Shinohara, Y., et al., 2015. Comparative modeling of the effects of intensive thinning on canopy interception loss in a Japanese cedar (Cryptomeria japonica D. Don) forest of western Japan. Agricultural and Forest Meteorology, 214-215, 148–156. doi:10.1016/j.agrformet.2015.08.257
  • Stewart, J.B., 1977. Evaporation from the wet canopy of a pine forest. Water Resources Research, 13 (6), 915–921. doi:10.1029/WR013i006p00915
  • Sun, X., et al., 2015. Effect of strip thinning on rainfall interception in a Japanese cypress plantation. Journal of Hydrology, 252, 607–618. doi:10.1016/j.jhydrol.2015.04.023
  • Teklehaimanot, Z., Jarvis, P.G., and Ledger, D.C., 1991. Rainfall interception and boundary layer conductance in relation to tree spacing. Journal of Hydrology, 123 (3–4), 261–278. doi:10.1016/0022-1694(91)90094-X
  • Tsukamoto, Y., Tange, I., and Minemura, T., 1988. Interception loss from forest canopies. Hakyuchi-kenkyu (Bulletin of the Institute for Agricultural Research on Rolling Land), 6, 60–82. (in Japanese with English summary).
  • van der Tol, C., et al., 2003. Average wet canopy evaporation for a Sitka spruce forest derived using the eddy correlation-energy balance technique. Journal of Hydrology, 276 (1–4), 12–19. doi:10.1016/S0022-1694(03)00024-6
  • Wallace, J. and McJannet, D., 2008. Modelling interception in coastal and montane rainforests in northern Queensland, Australia. Journal of Hydrology, 348 (3–4), 480–495. doi:10.1016/j.jhydrol.2007.10.019
  • Zabret, K. and Šraj, M., 2019. Evaluating the influence of rain event characteristics on rainfall interception by urban trees using multiple correspondence analysis. Water, 11 (12), 2659. doi:10.3390/w11122659
  • Zhang, J., et al., 2019. Typhoon-induced changes in rainfall interception loss from a tropical multispecies ‘reforest’. Journal of Hydrology, 568, 658–675. doi:10.1016/j.jhydrol.2018.11.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.