566
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Improving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithms

, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1457-1474 | Received 04 Feb 2021, Accepted 22 Mar 2021, Published online: 16 Jul 2021

References

  • Adnan, M., et al., 2019. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. Journal of Hydrology. (in press). doi:10.1016/j.jhydrol.2019.124371.
  • Akhavan, S., et al., 2010. Application of swat model to investigate nitrate leaching in hamadan–bahar watershed, Iran. Agriculture, Ecosystems & Environment, 139 (4), 675–688. doi:10.1016/j.agee.2010.10.015.
  • Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46, 175–185.
  • ASCE. 1993. Criteria for evaluating watershed models. Journal of Irrigation and Drainage Engineering, 119 (3), 429–442.
  • Auria, L. and Moro, R.A., 2009. Support Vector Machines (SVM) as a technique for solvency analysis. DIW Berlin Discussion Paper No. 811. Available at SSRN: doi:10.2139/ssrn.1424949.
  • Ayaz, Y., Kocamaz, A.F., and Karakoç, M.B., 2015. Modeling of compressive strength and UPV of high-volume mineral-admixtured concrete using rule-based M5 rule and tree model M5P classifiers. Construction and Building Materials, 94, 235–240. doi:10.1016/j.conbuildmat.2015.06.029.
  • Ayele, G., et al., 2017. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin. Ethiopia Water, 9, 782.
  • Baez-Villanueva, O.M., et al., 2020. RF-MEP: a novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sensing of Environment, 239, 111606. doi:10.1016/j.rse.2019.111606.
  • Bahat, Y., et al., 2009. Rainfall-runoff modelling in a small hyper-arid catchment. Journal of Hydrology, 373 (1–2), 204–217. doi:10.1016/j.jhydrol.2009.04.026.
  • Bala, J., et al. 1996. Using learning to facilitate the evolution of features for recognizing visual concepts. Evolutionary Computation, 4 (3), 297–311. doi:10.1162/evco.1996.4.3.297.
  • Beven, K.J., 2001. Rainfall-runoff modelling: the primer. 2nd ed. Chichester, England: John Wiley, Sons, 449 p. ISBN: 978-0-470-71459-1.
  • Beven, K.J., 2005. Rainfall-runoff modelling: introduction. Encyclopedia of Hydrological Sciences. doi:10.1002/0470848944.
  • Bhuiyan, M.A., Nikolopoulos, E.I., and Anagnostou, E.N., 2019. Machine learning-based blending of satellite and reanalysis precipitation datasets: a multiregional tropical complex terrain evaluation. Journal of Hydrometeorology, 20 (11), 2147–2161. doi:10.1175/JHM-D-19-0073.1.
  • Box, G.E.P. and Jenkins, G.M., 1970. Time series analysis, forecasting, and control. Francisco Holden-Day (6), 712. ISBN: 978-1-118-67502-1.
  • Boz, O., 2002. Feature subset selection by using sorted feature relevance. in ICMLA. In Proc. Intl. Conf. on Machine Learning and Applications.Published in ICMLA 2002. Citeseer.
  • Breiman, L., et al., 1984. Classifcation and regression trees. Belmont, CA: Wadsworth International Group, 432.
  • Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2), 123–140. doi:10.1007/BF00058655.
  • Breiman, L., 2001. Random forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324.
  • Bui, D., et al. 2018a. New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water, 10 (9), 1210. doi:10.3390/w10091210.
  • Bui, D., et al. 2018b. Novel hybrid evolutionary algorithms for spatial prediction of floods. Scientific Reports, 8 (1), 15364. doi:10.1038/s41598-018-33755-7.
  • Burges, C.J. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167. doi:10.1023/A:1009715923555.
  • Çelik, Ö., Teke, A., and Yildirim, H.B., 2016. The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Clean Production, 116, 1–12. doi:10.1016/j.jclepro.2015.12.082.
  • Chang, T.K., et al., 2017. Choice of rainfall inputs for event-based rainfall-runoff modelling in a catchment with multiple rainfall stations using data-driven techniques. Journal of Hydrology, 545, 100–108. doi:10.1016/j.jhydrol.2016.12.024.
  • Chen, W., et al., 2019. Spatial prediction of groundwater potentiality using ANFIS ensembled with Teaching-learning-based and Biogeography-based optimization. Journal of Hydrology, 527, 435–448. doi:10.1016/j.jhydrol.2019.03.013.
  • Clark, M.P., et al., 2017. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 21 (7), 3427–3440. doi:10.5194/hess-21-3427-2017.
  • Contreras, J., et al., 2018. Rainfall monitoring network design using conditioned Latin hypercube sampling and satellite precipitation estimates: an application in the ungauged Ecuadorian Amazon. International Journal of Climatology, 39 (4), 2209–2226. doi:10.1002/joc.5946.
  • Danandeh Mehr, A., et al., 2019. A hybrid support vector regression–firefly model for monthly rainfall forecasting. International Journal of Environmental Science and Technology, 16 (1), 335–346. doi:10.1007/s13762-018-1674-2.
  • Dawson, C.W. and Wilby, R., 1998. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal, 43 (1), 47–66. doi:10.1080/02626669809492102.
  • Dehghani, M., Riahi-Madvar, H., Hooshyaripor, F., Mosavi, A., Shamshirband, S., Zavadskas, E.K., and Chau, K. 2019. Prediction of hydropower generation using grey wolf optimization adaptive neuro-fuzzy inference system. Energies, 12 (2), Article no. 289. doi:10.3390/en12020289.
  • Demirel, M.C., Booij, M.J., and Hoekstra, A.Y., 2015. The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models. Hydrology and Earth System Sciences, 19 (1), 275–291. doi:10.5194/hess-19-275-2015.
  • Dodangeh, E., et al., 2019. Joint frequency analysis and uncertainty estimation of coupled rainfall–runoff series relying on historical and simulated data. Hydrological Sciences Journal. (In press). doi:10.1080/02626667.2019.1704762.
  • Dodangeh, E., Shahedi, K., Solaimani, K., and Kossieris, P., 2017. Usability of BLRP model for hydrological applications in arid and semi arid regions with limited precipitation data. Modeling Earth Systems and Environment, 3 (2), 539–555.
  • Dodangeh, E., Shahedi, K., and Solaimani, 2018. Application of Copula theory for IHACRES hydrologic model evaluation (Case study: Taleghan watershed). Journal of Earth and Space Physics, 44 (1), 71–88. (in Persian).
  • Furundzic, D., 1998. Application example of neural networks for time series analysis: rainfall–runoff modelling. Signal Processing, 64 (3), 383–396. doi:10.1016/S0165-1684(97)00203-X.
  • Gautam, M.R., Atanabe, K.W., and Aegusa, H.S., 2000. Runoff analysis in humid forest catchment with artificial neural network. Journal of Hydrology, 235 (1–2), 117–136. doi:10.1016/S0022-1694(00)00268-7.
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377 (1–2), 80–91. doi:10.1016/j.jhydrol.2009.08.003.
  • Habib, E., et al., 2014. Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile. Remote Sensing, 6 (7), 6688–6708. doi:10.3390/rs6076688.
  • Hashmi, S., Halawani, S.M., Barukab, O.M., and Ahmad, A. 2015. Model trees and sequential minimal optimization based support vector machine models for estimating minimum surface roughness value. Applied Mathematical Modelling, 39 (3–4), 1119–1136.
  • He, Y., Bárdossy, A., and Zehe, E., 2011. A review of regionalisation for continuous streamflow simulation. Hydrology and Earth System Sciences, 15 (11), 3539–3553. doi:10.5194/hess-15-3539-2011.
  • Hengl, T., et al., 2017. Soil grids 250 m: global gridded soil information based on machine learning. PLoS One, 12 (2), e0169748. doi:10.1371/journal.pone.0169748.
  • Herrnegger, M., Senone, T., and Nachtnebel, H.P., 2018. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment. Journal of Hydrology, 556, 913–921. doi:10.1016/j.jhydrol.2016.04.068.
  • Ho, T.K., 1995. Random decision forests. In: Document analysis and recognition, 1995, proceedings of the third international conference on document analysis and recognition (Volume 1). IEEE, 278–282.
  • Honorato, A.G., Silva, G.B., and Santos, C.A. 2018. Monthly streamflow forecasting using neuro-wavelet techniques and input analysis. Hydrological Science Journal, 63 (15–16), 2060–2075.
  • Hsu, K.I., Gupta, H.V., and Sorooshian, S., 1995. Artificial neural network modelling of the rainfall‐runoff process. Water Resources Research, 31 (10), 2517–2530. doi:10.1029/95WR01955.
  • Jeong, D. and Kim, Y.O., 2005. Rainfall‐runoff models using artificial neural networks for ensemble stream flow prediction. Hydrological Process, 19 (19), 3819–3835. doi:10.1002/hyp.5983.
  • Khosravi, K., et al., 2019b. Stochastic modeling of groundwater fluoride contamination: introducing lazy learners. Groundwater. (in press). doi:10.1111/gwat.12963.
  • Khosravi, K., et al., 2019a. Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq. Computers and Electronics in Agriculture, 167, 105041. doi:10.1016/j.compag.2019.105041.
  • Khosravi, K., et al., 2018. Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. Journal of Hydrology, 567, 165–179. doi:10.1016/j.jhydrol.2018.10.015.
  • Kirchner, J.W., 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42 (3). doi:10.1029/2005WR004362.
  • Kisi, O. and Parmar, K.S., 2016. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. Journal of Hydrology, 534, 104–112. doi:10.1016/j.jhydrol.2015.12.014.
  • Kisi, O., Shiri, J., and Tombul, M., 2012. Modelling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117. doi:10.1016/j.cageo.2012.07.001.
  • Kisi, O., Shiri, J., and Tombul, M., 2013. Modeling rainfall-runoff process using soft computing techniques. Computer and Geoscience, 51, 108–117. doi:10.1016/j.cageo.2012.07.001.
  • Kling, H., Fuchs, M., and Paulin, P., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264–277. doi:10.1016/j.jhydrol.2012.01.011.
  • Kundzewicz, Z.W., et al., 2014. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59 (1), 1–28. doi:10.1080/02626667.2013.857411.
  • Legates, D.R. and McCabe, G.J., 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018.
  • Liaw, A., and Wiwnwe, M. 2002. Classification and Regression by random Forest. R News. http://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf.
  • Liu, H. and Motoda, H., 2012. Feature selection for knowledge discovery and data mining. Vol. 454. Springer Science & Business Media.
  • Lohani, A.K., Goel, N.K., and Bhatia, K.K.S., 2010. Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall‐runoff modelling under different input domains. Hydrological Process, 25 (2), 175–193. doi:10.1002/hyp.7831.
  • Long, H., Zhang, Z., and Su, Y., 2014. Analysis of daily solar power prediction with data-driven approaches. Applied Energy, 126, 29–37. doi:10.1016/j.apenergy.2014.03.084.
  • Mallikarjuna, P., Suresh Babu, C.H., and Reddy, A.J.M., 2009. Rainfall—runoff modelling using artificial neural networks. ISH Journal of Hydraulic Engineering, 15 (1), 24–33. doi:10.1080/09715010.2009.10514928.
  • Mehdizadeh, S., et al., 2020. Drought modeling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 587, 125017. doi:10.1016/j.jhydrol.2020.125017.
  • Melesse, A., et al., 2011. Suspended sediment load prediction of river systems: an artificial neural network approach. Agricultural Water Management, 98 (5), 855–866. doi:10.1016/j.agwat.2010.12.012.
  • Mellit, A., et al., 2010. An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Conversion and Management, 51 (4), 771–782. doi:10.1016/j.enconman.2009.10.034.
  • Minns, A.W. and Hall, M.J., 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41 (3), 399–417. doi:10.1080/02626669609491511.
  • Mishra, S., et al., 2018. Rainfall-runoff modeling using clustering and regression analysis for the river brahmaputra basin. Journal of the Geological Society of India, 92 (3), 305–312. doi:10.1007/s12594-018-1012-9.
  • Moriasi, D., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153.
  • Najafi, B. and Ardabili, S.F., 2018. Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC). Resources, Conservation and Recycling, 133, 169–178. doi:10.1016/j.resconrec.2018.02.025.
  • Nayak, P.C., et al., 2004. A neuro-fuzzy computing technique for modelling hydrological time series. Journal of Hydrology, 291 (1–2), 52–66. doi:10.1016/j.jhydrol.2003.12.010.
  • Noor, H., et al., 2014. Comparison of single-site and multi-site based calibrations of SWAT in Taleghan Watershed, Iran. International Journal of Engineering, 27 (11), 1645–1652.
  • Nourani, V., 2017. An Emotional ANN (EANN) approach to modelling rainfall-runoff process. Journal of Hydrology, 544, 267–277. doi:10.1016/j.jhydrol.2016.11.033.
  • Nourani, V., Kisi, Ö., and Komasi, M., 2011. Two hybrid Artificial Intelligence approaches for modelling rainfall-runoff process. Journal of Hydrology, 402 (1–2), 41–59. doi:10.1016/j.jhydrol.2011.03.002.
  • Nourani, V., Komasi, M., and Mano, A., 2009. A multivariate ANN-wavelet approach for rainfall-runoff modelling. Water Resources Management, 23 (14), 2877–2894. doi:10.1007/s11269-009-9414-5.
  • Olaiya, F. and Adeyemo, A.B., 2012. Application of data mining techniques in weather prediction and climate change studies. International Journal of Information Engineering and Electronic Business, 4 (1), 51–59. doi:10.5815/ijieeb.2012.01.07.
  • Ömer Faruk, D., 2010. A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence, 23 (4), 586–594. doi:10.1016/j.engappai.2009.09.015.
  • Pradhanang, S.M., et al., 2011. Application of swat model to assess snowpack development and streamflow in the cannonsville watershed, new york, USA. Hydrological Processes, 25 (21), 31268–33277. doi:10.1002/hyp.8171.
  • Quinlan, J.R., 1992. Learning with continuous classes. In: 5th Australian joint conference on artificial intelligence. Samaniego: World Scientific, 343–348.
  • Rajurak, M.P., Kothyari, U.C., and Chaube, U.C., 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology, 285 (1–4), 96–113. doi:10.1016/j.jhydrol.2003.08.011.
  • Rezaie-Balf, M., Zahmatkesh, Z., and Kim, S., 2017. Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methods. Water Resource Management, 31 (12), 3843–3865. doi:10.1007/s11269-017-1711-9.
  • Rogers, W.F., 1972. new concept in hydrograph analysis. Water Resources Research, 8 (4), 937–981. doi:10.1029/WR008i004p00973.
  • Rojek, I., 2009. Classifier models in intelligent CAPP systems. In Man-machine interactions (pp. 311–319). Berlin, Heidelberg: Springer. Engineering, 119 (3), 429–442.
  • Salih, S., et al., 2019. River suspended sediment load prediction based on river discharge information: application of newly developed data mining models. Hydrological Sciences Journal. (In press). doi:10.1080/02626667.2019.1703186.
  • Shibata, R., 1976. Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika, 63 (1), 117–126. doi:10.1093/biomet/63.1.117.
  • Shortridge, J.E., Guikema, S.D., and Zaitchik, F. 2016. Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences, 20, 2611–2628. doi:10.5194/hess-20-2611-2016
  • Solaimani, K., 2009. Rainfall-runoff prediction based on artificial neural network (A case study : Jarahi Watershed). American-Eurasian Journal of Agricultural & Environmental Sciences, 5 (6), 856–865.
  • Srinivasulu, S. and Jain, A., 2006. A comparative analysis of training methods for artificial neural network rainfall-runoff models. Applied Soft Computing Journal, 6 (3), 295–306. doi:10.1016/j.asoc.2005.02.002.
  • Todini, E., 1988. Rainfall-runoff modelling - past, present and future. Journal of Hydrology, 100 (1–3), 341–352. doi:10.1016/0022-1694(88)90191-6.
  • Tongal, H. and Booij, M.J., 2017. Quantification of parametric uncertainty of ANN models with GLUE method for different streamflow dynamics. Stochastic Environmental Research and Risk Assessment, 31 (4), 993–1010. doi:10.1007/s00477-017-1408-x.
  • Tongal, H. and Booij, M.J., 2018. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266–282. doi:10.1016/j.jhydrol.2018.07.004.
  • Verbeiren, B., et al., 2012. Assessing urbanisation effects on rainfall-runoff using a remote sensing supported modelling strategy. International Journal of Applied Earth Observation and Geoinformation, 15, 49–56. doi:10.1016/j.jag.2012.08.011.
  • Voyant, C., et al., 2017. Machine learning methods for solar radiation forecasting: a review. Renewable Energy, 105, 569–582. doi:10.1016/j.renene.2016.12.095.
  • Wang, Y. and Witten, I.H., 1997. Induction of model trees for predicting continuous classes. In: Proc. 9th Eur. Conf. Mach. Learn. Poster Pap. Hamilton, New Zealand.
  • Weng, Q., 2001. Modelling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environmental Management, 28 (6), 737–748. doi:10.1007/s002670010258.
  • Wood, E.F. and Al, E., 2012. hyperresolution global land surface modelling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resources Research, 48 (1). doi:10.1029/2010WR010090.
  • Xue, X., 2017. Prediction of daily diffuse solar radiation using artificial neural networks. International Journal of Hydrogen Energy, 42 (47), 28214–28221. doi:10.1016/j.ijhydene.2017.09.150.
  • Yaseen, Z.M., et al., 2015. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530, 829–844. doi:10.1016/j.jhydrol.2015.10.038.
  • Yaseen, Z.M., et al., 2016. Non-tuned machine learning approach for hydrological time series forecasting. Neural Computing & Applications, 1–13. doi:10.1007/s00521-016-2763-0.
  • Young, P.C. and Beven, K.J., 1994. Data‐based mechanistic modelling and the rainfall‐flow non‐linearity. Environmetrics, 5 (3), 335–363. doi:10.1002/env.3170050311.
  • Zamani Sabzi, H., King, J.P., and Abudu, S., 2017. Developing an intelligent expert system for streamflow prediction, integrated in a dynamic decision support system for managing multiple reservoirs: a case study. Expert Systems with Applications, 83, 145–163. doi:10.1016/j.eswa.2017.04.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.