903
Views
5
CrossRef citations to date
0
Altmetric
Special Issue: Advancing socio-hydrology

Sociohydrology, ecohydrology, and the space-time dynamics of human-altered catchments

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1393-1408 | Received 23 Dec 2020, Accepted 20 May 2021, Published online: 22 Jul 2021

References

  • Albert, R., Jeong, H., and Barabási, A.L., 2000. Error and attack tolerance of complex networks. Nature, 406 (6794), 378–382. doi:10.1038/35019019
  • Allen, C., Gonzales, R., and Parrott, L., 2020. Modelling the contribution of ephemeral wetlands to landscape connectivity. Ecological Modelling, 419, 108944. doi:10.1016/j.ecolmodel.2020.108944
  • Altizer, S., Ostfeld, R.S., Johnson, P.T., Kutz, S. and Harvell, C.D., 2013. Climate change and infectious diseases: from evidence to a predictive framework. Science, 341(6145), 514–519.
  • Ammerman, A.J. and Cavalli-Sforza, L.L., 2014. The Neolithic transition and the genetics of populations in Europe. Princeton: Princeton University Press.
  • Anderson, R.M. and May, R.M., 1992. Infectious diseases of humans: dynamics and control. Oxford: Oxford university press.
  • Auchincloss, A.H., etal., 2012. A review of spatial methods in epidemiology, 2000–2010. Annual Review of Public Health, 33, 107–122. doi:10.1146/annurev-publhealth-031811-124655
  • Bascompte, J. and Solé, R.V., 1996. Habitat fragmentation and extinction thresholds in spatially explicit models. The Journal of Animal Ecology, 65, 465–473. doi:10.2307/5781
  • Batty, M., 2008. The size, scale, and shape of cities. Science, 319 (5864), 769–771. doi:10.1126/science.1151419
  • Bedford, J., et al., 2019. A new twenty-first century science for effective epidemic response. Nature, 575 (7781), 130–136. doi:10.1038/s41586-019-1717-y
  • Bertuzzo, E., et al., 2007. River networks and ecological corridors: reactive transport on fractals, migration fronts, hydrochory. Water Resources Research, 43 (4), W01407.1–W01407.18. doi:10.1029/2005wr004773
  • Bertuzzo, E., et al., 2011. Spatial effects on species persistence and implications for biodiversity. Proceedings of the National Academy of Sciences, 108 (11), 4346–4351. doi:10.1073/pnas.1017274108
  • Black, R., et al., 2011. The effect of environmental change on human migration. Global Environmental Change, 21, S3–S11. doi:10.1016/j.gloenvcha.2011.10.001
  • Blanco, M., Engelmann, D., and Normann, H.T., 2011. A within-subject analysis of other-regarding preferences. Games and Economic Behavior, 72 (2), 321–338. doi:10.1016/j.geb.2010.09.008
  • Botzen, W.J.W. and van den Bergh, J.C.J.M., 2009. Bounded rationality, climate risks and insurance: is there a market for natural disasters? Land Economics, 85, 266–279. doi:10.3368/le.85.2.265
  • Brantley, S.L., et al., 2017. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences (Online), 14 (22), 5115–5142.
  • Brauman, K.A., et al., 2007. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environment and Resources, 32, 67–98. doi:10.1146/annurev.energy.32.031306.102758
  • Brelsford, C., et al., 2020. Developing a sustainability science approach for water systems. Ecology & Society, 25 (2), 23. doi:10.5751/ES-11515-250223
  • Brook, B., N. Sodhi and C. Bradshaw, 2008. Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453–460.
  • Brown, C., et al., 2020. Resilience by design: a deep uncertainty approach for water systems in a changing world. Water Security, 9, 100051. doi:10.1016/j.wasec.2019.100051
  • Brown, J.H. and Kodric-Brown, A., 1977. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology, 58 (2), 445–449. doi:10.2307/1935620
  • Brozović, N., Sunding, D.L., and Zilberman, D., 2010. On the spatial nature of the groundwater pumping externality. Resource and Energy Economics, 32 (2), 154–164. doi:10.1016/j.reseneeco.2009.11.010
  • Burke, M., Hsiang, S.M., and Miguel, E., 2015. Climate and conflict. Annual Review of Economics, 7, 577–617. doi:10.1146/annurev-economics-080614-115430
  • Butzer, K.W., 2012. Collapse, environment, and society. Proceedings of the National Academy of Sciences, 109 (10), 3632–3639. doi:10.1073/pnas.1114845109
  • Caldas, M.M., et al., 2015. Opinion: endogenizing culture in sustainability science research and policy. Proceedings of the National Academy of Sciences, 112 (27), 8157–8159. doi:10.1073/pnas.1510010112
  • Carlton, E.J., et al., 2014. Heavy rainfall events and diarrhea incidence: the role of social and environmental factors. American Journal of Epidemiology, 179 (3), 344–352. doi:10.1093/aje/kwt279
  • Carr, J.A., et al., 2012. On the temporal variability of the virtual water network. Geophysical Research Letters, 39 (6). doi:10.1029/2012GL051247
  • Ceola, S., Laio, F., and Montanari, A., 2015. Human‐impacted waters: new perspectives from global high‐resolution monitoring. Water Resources Research, 51 (9), 7064–7079. doi:10.1002/2015WR017482
  • Chassang, S. and I Miquel, G.P., 2009. Economic shocks and civil war. Quarterly Journal of Political Science, 4 (3), 211–228. doi:10.1561/100.00008072
  • Chiu, M.C., et al., 2017. Anthropogenic threats to intermittent rivers and ephemeral streams. In: Intermittent rivers and ephemeral streams. Academic Press, 433–454.
  • Cifdaloz, O., etal., 2010. Robustness, vulnerability, and adaptive capacity in small-scale social-ecological systems: the Pumpa Irrigation System in Nepal. Ecology and Society, 15 (3). doi:10.5751/ES-03462-150339
  • Cohen, D.S. and Murray, J.D., 1981. A generalized diffusion model for growth and dispersal in a population. Journal of Mathematical Biology, 12 (2), 237–249. doi:10.1007/BF00276132
  • Cressman, R. and Tao, Y., 2014. The replicator equation and other game dynamics. Proceedings of the National Academy of Sciences, 111 (Supplement 3), 10810–10817. doi:10.1073/pnas.1400823111
  • D’Odorico, P., etal., 2010. Ecohydrology of terrestrial ecosystems. BioScience, 60 (11), 898–907. doi:10.1525/bio.2010.60.11.6
  • D’Odorico, P., Porporato, A., and Runyan, C.W., Eds., 2006. Dryland ecohydrology (Vol. 9). Dordrecht, The Netherlands: Springer.
  • Dang, Q., etal., 2016. A theoretical model of water and trade. Advances in Water Resources, 89, 32–41. doi:10.1016/j.advwatres.2015.12.016
  • Daniel, D., etal., 2018. Socio-environmental drivers of sustainable adoption of household water treatment in developing countries. Npj Clean Water, 1 (1), 1–6. doi:10.1038/s41545-018-0012-z
  • Daniel, D., Pande, S., and Rietveld, L., 2020. The effect of socio-economic characteristics on the use of household water treatment via psychosocial factors: a mediation analysis. Hydrological Sciences Journal, 65 (14), 2350–2358. doi:10.1080/02626667.2020.1807553
  • Davis, K.F., etal., 2018. A universal model for predicting human migration under climate change: examining future sea level rise in Bangladesh. Environmental Research Letters, 13 (6), 064030. doi:10.1088/1748-9326/aac4d4
  • Di Baldassarre, G., etal., 2015. Debates—Perspectives on socio‐hydrology: capturing feedbacks between physical and social processes. Water Resources Research, 51 (6), 4770–4781. doi:10.1002/2014WR016416
  • Di Baldassarre, G., etal., 2019. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resources Research, 55 (8), 6327–6355. doi:10.1029/2018WR023901
  • Diekmann, O. and Heesterbeek, J.A.P., 2000. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (Vol. 5). John Wiley & Sons.
  • Dreibelbis, R., etal., 2013. The integrated behavioural model for water, sanitation, and hygiene: a systematic review of behavioural models and a framework for designing and evaluating behaviour change interventions in infrastructure-restricted settings. BMC Public Health, 13 (1), 1015. doi:10.1186/1471-2458-13-1015
  • Dudgeon, D., etal., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81 (2), 163–182. doi:10.1017/S1464793105006950
  • Dullinger, S., etal., 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2 (8), 619–622. doi:10.1038/nclimate1514
  • Eisenberg, J.N., etal., 2006. Environmental change and infectious disease: how new roads affect the transmission of diarrheal pathogens in rural Ecuador. Proceedings of the National Academy of Sciences, 103 (51), 19460–19465. doi:10.1073/pnas.0609431104
  • Eisenberg, M.C., Robertson, S.L., and Tien, J.H., 2013. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. Journal of Theoretical Biology, 324, 84–102. doi:10.1016/j.jtbi.2012.12.021
  • Estrada, E., Higham, D.J., and Hatano, N., 2009. Communicability betweenness in complex networks. Physica A: Statistical Mechanics and Its Applications, 388 (5), 764–774. doi:10.1016/j.physa.2008.11.011
  • Fang, Y., etal., 2018. Globally universal fractal pattern of human settlements in river networks. Earth’s Future, 6 (8), 1134–1145. doi:10.1029/2017EF000746
  • Fearon, J.D., 1995. Rationalist explanations for war. International Organization, 49 (3), 379–414. doi:10.1017/S0020818300033324
  • Finger, F., etal., 2016. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Proceedings of the National Academy of Sciences, 113 (23), 6421–6426. doi:10.1073/pnas.1522305113
  • Fitzgibbon, W.E., etal., 2020. Modelling the aqueous transport of an infectious pathogen in regional communities: application to the cholera outbreak in Haiti. Journal of the Royal Society Interface, 17 (169), 20200429. doi:10.1098/rsif.2020.0429
  • Fortuna, M.A., Gómez-Rodríguez, C., and Bascompte, J., 2006. Spatial network structure and amphibian persistence in stochastic environments. Proceedings of the Royal Society B: Biological Sciences, 273 (1592), 1429–1434. doi:10.1098/rspb.2005.3448
  • Fracasso, A., 2014. A gravity model of virtual water trade. Ecological Economics, 108, 215–228. doi:10.1016/j.ecolecon.2014.10.010
  • Funk, S., Salathé, M., and Jansen, V.A., 2010. Modelling the influence of human behaviour on the spread of infectious diseases: a review. Journal of the Royal Society Interface, 7 (50), 1247–1256. doi:10.1098/rsif.2010.0142
  • Galor, O., 1992. A two-sector overlapping-generations model: a global characterization of the dynamical system. Econometrica: Journal of the Econometric Society, 60, 1351–1386. doi:10.2307/2951525
  • Gao, H., etal., 2014. Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters, 41 (22), 7916–7923. doi:10.1002/2014GL061668
  • Gardner, R., Moore, M.R., and Walker, J.M., 1997. Governing a groundwater commons: a strategic and laboratory analysis of western water law. Economic Inquiry, 35 (2), 218–234. doi:10.1111/j.1465-7295.1997.tb01905.x
  • Gatto, M., etal., 2012. Generalized reproduction numbers and the prediction of patterns in waterborne disease. Proceedings of the National Academy of Sciences, 109 (48), 19703–19708. doi:10.1073/pnas.1217567109
  • Gibbons, R.S., 1992. Game theory for applied economists. Princeton: Princeton University Press.
  • Gibbs, J.P., 1993. Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands, 13 (1), 25–31. doi:10.1007/BF03160862
  • Giezendanner, J., etal., 2019. A minimalist model of extinction and range dynamics of virtual mountain species driven by warming temperatures. PloS One, 14 (3), e0213775. doi:10.1371/journal.pone.0213775
  • Giordano, M.F., Giordano, M.A. and Wolf, A.T., 2005. International resource conflict and mitigation. Journal of Peace Research, 42(1), 47–65.
  • Gordon, L. and Folke, C., 2000. Ecohydrological landscape management for human well-being. Water International, 25 (2), 178–184. doi:10.1080/02508060008686816
  • Gordon, L.J., Peterson, G.D., and Bennett, E.M., 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology & Evolution, 23 (4), 211–219. doi:10.1016/j.tree.2007.11.011
  • Grames, J., etal., 2016. Modeling the interaction between flooding events and economic growth. Ecological Economics, 129, 193–209. doi:10.1016/j.ecolecon.2016.06.014
  • Hanski, I., 1994. Patch-occupancy dynamics in fragmented landscapes. Trends in Ecology & Evolution, 9 (4), 131–135. doi:10.1016/0169-5347(94)90177-5
  • Herman, J.D., etal., 2014. Beyond optimality: multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty. Water Resources Research, 50 (10), 7692–7713. doi:10.1002/2014WR015338
  • Hernán, M.A. and Robins, J.M., 2006. Estimating causal effects from epidemiological data. Journal of Epidemiology & Community Health, 60 (7), 578–586. doi:10.1136/jech.2004.029496
  • Hoekstra, A.Y. and Chapagain, A.K., 2011. Globalization of water: sharing the planet’s freshwater resources. Hoboken, New Jersey: John Wiley & Sons.
  • Hof, A.F., den Elzen, M.G., and Beltran, A.M., 2011. Predictability, equitability and adequacy of post-2012 international climate financing proposals. Environmental Science & Policy, 14(6), 615–627.
  • Hofbauer, J. and Sigmund, K., 1998. Evolutionary games and population dynamics. Cambridge: Cambridge university press.
  • Hsiang, S.M., Burke, M., and Miguel, E., 2013. Quantifying the influence of climate on human conflict. Science, 341 (6151), 1235367. doi:10.1126/science.1235367
  • Hubbell, S.P., 2001. The unified neutral theory of biodiversity and biogeography (MPB-32) (Vol. 32). Princeton: Princeton University Press.
  • Ingram, H.A.P., 1987. Ecohydrology of Scottish peatlands. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 78 (4), 287–296. doi:10.1017/S0263593300011226
  • Jackson, R.B., Jobbágy, E.G. and Nosetto, M.D., 2009. Ecohydrology in a human‐dominated landscape. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 2 (3), 383–389. doi:10.1002/eco.81
  • Jones, M.E., etal., 2008. Life-history change in disease-ravaged Tasmanian devil populations. Proceedings of the National Academy of Sciences, 105 (29), 10023–10027. doi:10.1073/pnas.0711236105
  • Kahneman, D. and Tversky, A., 1979. Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291. doi:10.2307/1914185
  • Kandasamy, J., etal., 2014. sociohydrologic drivers of the pendulum swing between agricultural development and environmental health: a case study from Murrumbidgee River basin, Australia. Hydrology and Earth System Sciences, 18, 1027–1041. doi:10.5194/hess-18-1027-2014
  • Kniveton, D., Smith, C., and Wood, S., 2011. Agent-based model simulations of future changes in migration flows for Burkina Faso. Global Environmental Change, 21 (1), S34–S40. doi:10.1016/j.gloenvcha.2011.09.006
  • Konar, M., etal., 2011. Water for food: the global virtual water trade network. Water Resources Research, 47 (5). doi:10.1029/2010WR010307
  • Kraay, A.N., etal., 2020. Understanding the impact of rainfall on diarrhea: testing the concentration-dilution hypothesis using a systematic review and meta-analysis. Environmental Health Perspectives, 128 (12), 126001. doi:10.1289/EHP6181
  • Lazzaro, G., etal., 2017. A probabilistic approach to quantifying hydrologic thresholds regulating migration of adult Atlantic salmon into spawning streams. Water Resources Research, 53 (3), 2264–2277. doi:10.1002/2016WR019244
  • Leibold, M.A., etal., 2004. The metacommunity concept: a framework for multi‐scale community ecology. Ecology Letters, 7 (7), 601–613. doi:10.1111/j.1461-0248.2004.00608.x
  • Leigh, C., etal., 2016. Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology, 61 (8), 1181–1199. doi:10.1111/fwb.12646
  • Lessler, J. and Cummings, D.A., 2016. Mechanistic models of infectious disease and their impact on public health. American Journal of Epidemiology, 183 (5), 415–422. doi:10.1093/aje/kww021
  • Levin, S.A., 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture.Ecology, 73 (6), 1943–1967. doi:10.2307/1941447
  • Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. American Entomologist, 15 (3), 237–240.
  • Levy, K., etal., 2016. Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environmental Science & Technology, 50 (10), 4905–4922. doi:10.1021/acs.est.5b06186
  • Levy, K., Smith, S.M., and Carlton, E.J., 2018. Climate change impacts on waterborne diseases: moving toward designing interventions. Current Environmental Health Reports, 5 (2), 272–282.
  • Levy, M.C., etal., 2019. Spatiotemporal error in rainfall data: consequences for epidemiologic analysis of waterborne diseases. American Journal of Epidemiology, 188 (5), 950–959. doi:10.1093/aje/kwz010
  • Lomolino, M.V., 2001. Elevation gradients of species‐density: historical and prospective views. Global Ecology and Biogeography, 10 (1), 3–13. doi:10.1046/j.1466-822x.2001.00229.x
  • Mach, K.J., etal., 2019. Climate as a risk factor for armed conflict. Nature, 571 (7764), 193–197. doi:10.1038/s41586-019-1300-6
  • Madani, K. and Dinar, A., 2012. Non-cooperative institutions for sustainable common pool resource management: application to groundwater. Ecological Economics, 74, 34–45. doi:10.1016/j.ecolecon.2011.12.006
  • Madani, K. and Shafiee-Jood, M., 2020. sociohydrology: a new understanding to unite or a new science to divide? Water, 12 (7), 1941. doi:10.3390/w12071941
  • Mari, L., etal., 2011. Hydrologic controls and anthropogenic drivers of the zebra mussel invasion of the river system. Water Resources Research, 47 (3), W03523. doi:10.1029/2010WR009920
  • Mari, L., etal., 2012. Modelling cholera epidemics: the role of waterways, human mobility and sanitation. Journal of the Royal Society Interface, 9 (67), 376–388. doi:10.1098/rsif.2011.0304
  • Mari, L., etal., 2014. Floquet theory for seasonal environmental forcing of spatially explicit waterborne epidemics. Theoretical Ecology, 7 (4), 351–365. doi:10.1007/s12080-014-0223-y
  • Mari, L., etal., 2017. Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis. Scientific Reports, 7 (1), 1–11. doi:10.1038/s41598-017-00493-1
  • Mari, L., etal., 2018. Epidemicity thresholds for water-borne and water-related diseases. Journal of Theoretical Biology, 447, 126–138. doi:10.1016/j.jtbi.2018.03.024
  • Mari, L., etal., 2019. Conditions for transient epidemics of waterborne disease in spatially explicit systems. Royal Society Open Science, 6 (5), 181517. doi:10.1098/rsos.181517
  • Maurer, B.A., 1999. Untangling ecological complexity: the macroscopic perspective. Chicago: University of Chicago Press.
  • McNeill, W.H., 1984. Human migration in historical perspective. Population andDevelopment Review, 10 (1), 1–18. JSTOR, doi:10.2307/1973159.
  • Metcalf, C.J.E., etal., 2017. Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead. Proceedings of the Royal Society B: Biological Sciences, 284 (1860), 20170901. doi:10.1098/rspb.2017.0901
  • Michaelis, T., Brandimarte, L., and Mazzoleni, M., 2020. Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework. Hydrological Sciences Journal, 65 (9), 1458–1473.
  • Moilanen, A., 1999. Patch occupancy models of metapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology, 80 (3), 1031–1043. doi:10.1890/0012-9658(1999)080[1031:POMOMD]2.0.CO;2
  • Morgenstern, O. and Von Neumann, J., 1953. Theory of games and economic behavior. Princeton: Princeton university press.
  • Mullainathan, S. and Thaler, R.H., 2000. Behavioral economics(No. w7948). Cambridge: National Bureau of Economic Research.
  • Müller, M.F., etal., 2016. Impact of the Syrian refugee crisis on land use and transboundary freshwater resources. Proceedings of the National Academy of Sciences, 113 (52), 14932–14937. doi:10.1073/pnas.1614342113
  • Müller, M.F. and Levy, M.C., 2019. Complementary vantage points: integrating hydrology and economics for sociohydrologic knowledge generation. Water Resources Research, 55 (4), 2549–2571. doi:10.1029/2019WR024786
  • Müller, M.F., Müller‐Itten, M.C., and Gorelick, S.M., 2017. How Jordan and Saudi Arabia are avoiding a tragedy of the commons over shared groundwater. Water Resources Research, 53 (7), 5451–5468. doi:10.1002/2016WR020261
  • Muneepeerakul, R., etal., 2008. Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin. Nature, 453 (7192), 220–222. doi:10.1038/nature06813
  • Muneepeerakul, R. and Anderies, J.M., 2020. The emergence and resilience of self-organized governance in coupled infrastructure systems. Proceedings of the National Academy of Sciences, 117 (9), 4617–4622. doi:10.1073/pnas.1916169117
  • Negri, D.H., 1989. The common property aquifer as a differential game. Water Resources Research, 25 (1), 9–15. doi:10.1029/WR025i001p00009
  • Ohlin, B., 1935. Interregional and international trade. Cambridge, MA: Harvard University Press.
  • Pande, S., Ertsen, M., and Sivapalan, M., 2014. Endogenous technological and population change under increasing water scarcity. Hydrology and Earth System Sciences, 18 (8), 3239. doi:10.5194/hess-18-3239-2014
  • Pande, S. and Sivapalan, M., 2017. Progress in socio‐hydrology: a meta‐analysis of challenges and opportunities. Wiley Interdisciplinary Reviews: Water, 4 (4), e1193.
  • Pandey, P.K., etal., 2014. Contamination of water resources by pathogenic bacteria. Amb Express, 4 (1), 51. doi:10.1186/s13568-014-0051-x
  • Pattanayak, S.K. and Pfaff, A., 2009. Behavior, environment, and health in developing countries: evaluation and valuation. Annual Review of Resource Economics, 1 (1), 183–217. doi:10.1146/annurev.resource.050708.144053
  • Penny, G., etal., 2020. Trust and transboundary groundwater cooperation. Water Resources Research, In Revision.
  • Perch-Nielsen, S.L., Bättig, M.B., and Imboden, D., 2008. Exploring the link between climate change and migration. Climatic Change, 91 (3–4), 375. doi:10.1007/s10584-008-9416-y
  • Perez-Saez, J., etal., 2015. A theoretical analysis of the geography of schistosomiasis in Burkina Faso highlights the roles of human mobility and water resources development in disease transmission. PLOS Neglected Tropical Diseases, 9 (10), e0004127. doi:10.1371/journal.pntd.0004127
  • Perez-Saez, J., etal., 2017. Classification and prediction of river network ephemerality and its relevance for waterborne disease epidemiology. Advances in Water Resources, 110, 263–278. doi:10.1016/j.advwatres.2017.10.003
  • Porporato, A. and Rodriguez‐Iturbe, I., 2013. From random variability to ordered structures: a search for general synthesis in ecohydrology. Ecohydrology, 6 (3), 333–342. doi:10.1002/eco.1400
  • Ramsey, F.P., 1928. A mathematical theory of saving. The Economic Journal, 38 (152), 543–559. doi:10.2307/2224098
  • Rebaudet, S., etal., 2013. Environmental determinants of cholera outbreaks in inland Africa: a systematic review of main transmission foci and propagation routes. The Journal of Infectious Diseases, 208 (suppl_1), S46–S54. doi:10.1093/infdis/jit195
  • Rinaldo, A., etal., 2012. Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proceedings of the National Academy of Sciences, 109 (17), 6602–6607. doi:10.1073/pnas.1203333109
  • Rinaldo, A., Gatto, M., and Rodriguez-Iturbe, I., 2020. River networks as ecological corridors: species, populations, pathogens. Cambridge: Cambridge University Press.
  • Roche, K.R., etal., 2020. Climate change and the opportunity cost of conflict. Proceedings of the NationalAcademy of Sciences, 117 (4), 1935–1940. doi:10.1073/pnas.1914829117
  • Rodriguez‐Iturbe, I., 2000. Ecohydrology: a hydrologic perspective of climate‐soil‐vegetation dynamies. Water Resources Research, 36 (1), 3–9. doi:10.1029/1999WR900210
  • Rodríguez-Iturbe, I. and Porporato, A., 2007. Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics. Cambridge: Cambridge University Press.
  • Romer, P.M., 1990. Endogenous technological change. Journal of Political Economy, 98 (5, Part 2), S71–S102. doi:10.1086/261725
  • Roobavannan, M., etal., 2018. Norms and values in sociohydrological models. Hydrology and Earth System Sciences, 22, 1337–1349. doi:10.5194/hess-22-1337-2018
  • Rosenzweig, M.L., 1995. Species diversity in space and time. Cambridge: Cambridge University Press.
  • Rothman, K.J., Greenland, S., and Lash, T.L., Eds., 2008. Modern epidemiology (Vol. 3). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
  • Rubin, D.B., 2007. 2 statistical inference for causal effects, with emphasis on applications in epidemiology and medical statistics. Handbook of Statistics, 27, 28–63.
  • Rusca, M. and Di Baldassarre, G., 2019. Interdisciplinary critical geographies of water: capturing the mutual shaping of society and hydrological flows. Water, 11 (10), 1973. doi:10.3390/w11101973
  • Rybicki, J. and Hanski, I., 2013. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecology Letters, 16, 27–38. doi:10.1111/ele.12065
  • Saleh, Y., Gürler, Ü., and Berk, E., 2011. Centralized and decentralized management of groundwater with multiple users. European Journal of Operational Research, 215 (1), 244–256. doi:10.1016/j.ejor.2011.05.048
  • Sanderson, M.R., etal., 2017. Bringing the “social” into sociohydrology: conservation policy support in the Central Great Plains of Kansas, USA. Water Resources Research, 53 (8), 6725–6743. doi:10.1002/2017WR020659
  • Sartori, M., etal., 2017. Modeling the future evolution of the virtual water trade network: a combination of network and gravity models. Advances in Water Resources, 110, 538–548. doi:10.1016/j.advwatres.2017.05.005
  • Schotter, A. and Sopher, B., 2003. Social learning and coordination conventions in intergenerational games: an experimental study. Journal of Political Economy, 111 (3), 498–529. doi:10.1086/374187
  • Semlitsch, R.D., 2000. Principles for management of aquatic-breeding amphibians. The Journal of Wildlife Management, 64, 615–631. doi:10.2307/3802732
  • Sen, A.K., 1977. Rational fools: a critique of the behavioral foundations of economic theory. Philosophy & Public Affairs,  6 (4), 317–344.
  • Sibly, R.M. and Hone, J., 2002. Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357 (1425), 1153–1170. doi:10.1098/rstb.2002.1117
  • Sivakumar, B., 2012. Socio‐hydrology: not a new science, but a recycled and re‐worded Hydrosociology. Hydrological Processes, 26 (24), 3788–3790.
  • Sivapalan, M., etal., 2014. Socio‐hydrology: use‐inspired water sustainability science for the Anthropocene. Earth’s Future, 2 (4), 225–230. doi:10.1002/2013EF000164
  • Sivapalan, M., 2018. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science. Hydrology & Earth System Sciences, 22 (3), 1665–1693. doi:10.5194/hess-22-1665-2018
  • Sivapalan, M. and Blöschl, G., 2015. Time scale interactions and the coevolution of humans and water. Water Resources Research, 51 (9), 6988–7022. doi:10.1002/2015WR017896
  • Sivapalan, M., Savenije, H.H., and Blöschl, G., 2012. sociohydrology: a new science of people and water. Hydrological Processes, 26 (8), 1270–1276. doi:10.1002/hyp.8426
  • Stattner, E. and Vidot, N., 2011. Social network analysis in epidemiology: current trends and perspectives. In: 2011 Fifth International Conference on Research Challenges in Information Science,May. Gosier, France: IEEE, 1–11.
  • Sun, G., Hallema, D., and Asbjornsen, H., 2017. Ecohydrological processes and ecosystem services in the Anthropocene: a review. Ecological Processes, 6 (1), 1–9. doi:10.1186/s13717-017-0104-6
  • Sung, K., etal., 2018. Effects of flood control strategies on flood resilience under sociohydrological disturbances. Water Resources Research, 54 (4), 2661–2680. doi:10.1002/2017WR021440
  • Tamburino, L., Di Baldassarre, G., and Vico, G., 2020. Water management for irrigation, crop yield and social attitudes: a socio-agricultural agent-based model to explore a collective action problem. Hydrological Sciences Journal, 65 (11), 1815–1829. doi:10.1080/02626667.2020.1769103
  • Tamea, S., etal., 2014. Drivers of the virtual water trade. Water Resources Research, 50 (1), 17–28. doi:10.1002/2013WR014707
  • Tian, F., etal., 2019. Dynamics and driving mechanisms of asymmetric human water consumption during alternating wet and dry periods. Hydrological Sciences Journal, 64 (5), 507–524. doi:10.1080/02626667.2019.1588972
  • Tien, J.H. and Earn, D.J., 2010. Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bulletin of Mathematical Biology, 72 (6), 1506–1533. doi:10.1007/s11538-010-9507-6
  • Troch, P.A., etal., 2009. Climate and vegetation water use efficiency at catchment scales. Hydrological Processes: An International Journal, 23 (16), 2409–2414. doi:10.1002/hyp.7358
  • Troy, T.J., Pavao‐Zuckerman, M., and Evans, T.P., 2015. Debates—Perspectives on socio‐hydrology: socio‐hydrologic modeling: tradeoffs, hypothesis testing, and validation. Water Resources Research, 51 (6), 4806–4814. doi:10.1002/2015WR017046
  • Tu, C., Suweis, S., and D’Odorico, P., 2019. Impact of globalization on the resilience and sustainability of natural resources. Nature Sustainability, 2 (4), 283–289. doi:10.1038/s41893-019-0260-z
  • Van Den Bergh, J.C., Ferrer-i-Carbonell, A., and Munda, G., 2000. Alternative models of individual behaviour and implications for environmental policy. Ecological Economics, 32 (1), 43–61. doi:10.1016/S0921-8009(99)00088-9
  • Van Schmidt, N.D., etal., 2019. Integrating social and ecological data to model metapopulation dynamics in coupled human and natural systems. Ecology, 100 (6), e02711. doi:10.1002/ecy.2711
  • Verheyen, K., etal., 2004. Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology, 85 (12), 3302–3312. doi:10.1890/04-0395
  • Vogel, R.M., etal., 2015. Hydrology: the interdisciplinary science of water. Water Resources Research, 51 (6), 4409–4430. doi:10.1002/2015WR017049
  • Wesselink, A., Kooy, M., and Warner, J., 2017. Socio‐hydrology and hydrosocial analysis: toward dialogues across disciplines. Wiley Interdisciplinary Reviews: Water, 4 (2), e1196. doi:10.1002/wat2.1196
  • World Health Organization, 2019. Global action plan on physical activity 2018-2030: more active people for a healthier world. World Health Organization.
  • Yang, Y., Donohue, R.J., and McVicar, T.R., 2016. Global estimation of effective plant rooting depth: implications for hydrological modeling. Water Resources Research, 52 (10), 8260–8276. doi:10.1002/2016WR019392
  • Yu, D., etal., 2015. Effect of infrastructure design on commons dilemmas in social− ecological system dynamics. Proceedings of the National Academy of Sciences, 112 (43), 13207–13212. doi:10.1073/pnas.1410688112
  • Yu, D., etal., 2017. Incorporating institutions and collective action into a sociohydrological model of flood resilience. Water Resources Research, 53 (2), 1336–1353. doi:10.1002/2016WR019746
  • Yu, D., etal., 2020. sociohydrology: an interplay of design and self-organization in a multilevel world. Ecology and Society, 25 (4). doi:10.5751/ES-11887-250422
  • Zalewski, M., Janauer, G.A., and Jolankai, G. eds., 1997. Ecohydrology: a new paradigm for the sustainable use of aquatic resources (Vol. 40). Paris: Unesco, 1–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.