6,230
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Magnitude–frequency analysis of coarse suspended sediment discharges in northwestern Greece

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1096-1113 | Received 16 Oct 2021, Accepted 28 Feb 2022, Published online: 16 May 2022

References

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716–723. doi:10.1109/TAC.1974.1100705.
  • Arnold, J.G., Allen, P.M., and Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology, 142 (1–4), 47–69. doi:10.1016/0022-1694(93)90004-S.
  • Ashmore, P.E., 1986. Suspended sediment transport in the Saskatchewan River basin. Report IWD-HQ-WRB-SS-86-9.
  • Asselman, N.E.M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234 (3–4), 228–248. doi:10.1016/S0022-1694(00)00253-5.
  • Bailey, G., King, G., and Sturdy, D., 1993. Active tectonics and land-use strategies: a Palaeolithic example from northwest Greece. Antiquity, 67 (255), 292–312. doi:10.1017/S0003598X00045361.
  • Balafoutis, C., 1977. Contribution to the study of Macedonia and Thrace climate. Thesis (PhD). Aristotle University of Thessaloniki.
  • Benkhaled, A., et al., 2014. Frequency analysis of annual maximum suspended sediment concentrations in Abiod wadi, Biskra (Algeria). Hydrological Processes, 28 (12), 3841–3854. doi:10.1002/hyp.9880.
  • Benson, M.A., 1965. Spurious correlation in hydraulics and hydrology. Journal of the Hydraulics Division, 91 (4), 35–42. doi:10.1061/JYCEAJ.0001293.
  • Boessenkool, B., 2017. extremeStat: extreme value statistics and quantile estimation. R package version 1.4.0 [software]. Available from: https://CRAN.R-project.org/package=extremeStat [ Accessed 4 January 2022]
  • Boyce, R.C., 1975. Sediment routing with sediment-delivery ratios. In: Proceedings of the Sediment-Yield Workshop ‘Present and Prospective Technology for Predicting Sediment Yields and Sources’, 28-30 November 1972. Oxford, Miss: USDA Sedimentation Laboratory. Publication No. ARS-S-40, 61–65.
  • Carcaillet, J., et al., 2009. Uplift and active tectonics of southern Albania inferred from incision of alluvial terraces. Quaternary Research, 71 (3), 465–476. doi:10.1016/j.yqres.2009.01.002.
  • Clarke, R.T., 1994. Fitting distributions. Chapter 4. Statistical modeling in hydrology. Chichester: John Wiley & Sons Ltd, 39–85.
  • Conrad, C. and Saunderson, H., 2000. Temporal and spatial patterns of suspended sediment yields for selected rivers in the eastern United States: implications for nutrient and contaminant transfer. In: Proceedings of the Symposium ‘The Role of Erosion and Sediment Transport in Nutrient and Contaminant Transfer’, July 2000. Waterloo: IAHS Publication No. 263.
  • De Girolamo, A.M., Pappagallo, G., and Lo Porto, A., 2015. Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: the Celone (SE Italy). Catena, 128, 135–143. doi:10.1016/j.catena.2014.09.020.
  • Dijkman, J., 1978. Some characteristics of the USP–61 and Delft Bottle. The Netherlands: Delft University of Technology. Int. Report No. 5-78.
  • Dijkman, J., 1981. Investigation of characteristic parameters of Delft Bottle. The Netherlands: Delft University of Technology. Report S362.
  • Dimas, P., 2013. Stochastic simulation framework for optimum hybrid system design of hydroelectric - wind energy: investigation based on the Aliakmon Hydro System. Thesis. National Technical University of Athens.
  • Duan, N., 1983. Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association, 78 (383), 605–610. doi:10.1080/01621459.1983.10478017.
  • Efthimiou, N., 2018. The importance of soil data availability on erosion modeling. Catena, 165, 551–566. doi:10.1016/j.catena.2018.03.002.
  • Efthimiou, N., 2019a. The role of sediment rating curve development methodology on river load modeling. Environmental Monitoring and Assessment, 191 (2), 1–19. doi:10.1007/s10661-018-7167-4.
  • Efthimiou, N., 2019b. Development and testing of the Revised Morgan-Morgan-Finney (RMMF) soil erosion model under different pedological datasets. Hydrological Sciences Journal, 64 (9), 1095–1116. doi:10.1080/02626667.2019.1623896.
  • Efthimiou, N. and Lykoudi, E., 2017. Soil erosion estimation using the EPM model. Bulletin of the Geological Society of Greece, 50 (1), 305. doi:10.12681/bgsg.11731.
  • Efthimiou, N., Lykoudi, E., and Karavitis, C., 2017. Comparative analysis of sediment yield estimations using different empirical soil erosion models. Hydrological Sciences Journal, 62 (16), 2674–2694. doi:10.1080/02626667.2017.1404068.
  • Efthimiou, N. and Psomiadis, E., 2018. The significance of land cover delineation on soil erosion assessment. Environmental Management, 62 (2), 383–402. doi:10.1007/s00267-018-1044-3.
  • Ellison, C.A., Savage, B.E., and Johnson, G.D., 2014. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011. Reston: USGS, Scientific Investigations Report 2013-5205.
  • EUROSTAT, 2014. Agri-environmental indicator - soil cover. Available from https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_soil_cover [ Accessed 2 Mar 2021]
  • Ferguson, R.I., 1986. River loads underestimated by rating curves. Water Resources Research, 22 (1), 74–76. doi:10.1029/WR022i001p00074.
  • Gao, P., et al., 2007. Suspended-sediment transport in an intensively cultivated watershed in southeastern California. Catena, 69 (3), 239–252. doi:10.1016/j.catena.2006.06.002.
  • Gao, P., 2008. Understanding watershed suspended sediment transport. Progress in Physical Geography, 32 (3), 243–263. doi:10.1177/0309133308094849.
  • Gao, P. and Puckett, J., 2012. A new approach for linking event-based upland sediment sources to downstream suspended sediment transport. Earth Surface Processes and Landforms, 37 (2), 169–179. doi:10.1002/esp.2229.
  • Gavriil, I., et al., 2006. An application of theoretical probability distributions, to the study of PM10 and PM2.5 time series in Athens, Greece. Global Nest Journal, 8 (3), 241‒251.
  • Gettel, M., et al., 2011. Improving suspended sediment measurements by automatic samplers. Journal of Environmental Monitoring, 13 (10), 2703–2709. doi:10.1039/c1em10258c.
  • Glysson, D.G., 1987. Sediment-Transportcurves. USGS Open-File Report 87‒218.
  • Hansen, D. and Bray, D., 1987. Generation of annual suspended sediment loads for the Kennebacasis using sediment rating curves. In: Proceedings of the 8th Canadian Hydrotechnology Conference, May 1987. Quebec. Canadian Society of Civil Engineers.
  • Hatzianastassiou, N., et al., 2008. Spatial and temporal variation of precipitation in Greece and surrounding regions based on Global Precipitation Climatology Project data. Journal of Climate, 21 (6), 1349–1370. doi:10.1175/2007JCLI1682.1.
  • Juez, C., Hassan, M.A., and Franca, M.J., 2018. The Origin of fine sediment determines the observations of suspended sediment fluxes under unsteady flow conditions. Water Resources Research, 54 (8), 5654–5669. doi:10.1029/2018WR022982.
  • Juez, C. and Nadal-Romero, E., 2021. Long-term temporal structure of catchment sediment response to precipitation in a humid mountain badland area. Journal of Hydrology, 597, 125723.
  • Karalis, S., Karymbalis, E., and Mamassis, N., 2018. Models for sediment yield in mountainous Greek catchments. Geomorphology, 322, 76–88. doi:10.1016/j.geomorph.2018.08.035.
  • Kavian, A., Dodangeh, S., and Abdollahi, Z., 2016. Annual suspended sediment concentration frequency analysis in Sefidroud basin, Iran. Modeling Earth Systems and Environment, 2 (1), 1–10. doi:10.1007/s40808-016-0101-2.
  • Klemeš, V., 2000. Tall tales about tails of hydrological distributions. II. Journal of Hydrologic Engineering, 5 (3), 232–239. doi:10.1061/(ASCE)1084-0699(2000)5:3(232).
  • Ko, M.K. and Tarhule, A., 1994. Streamflow droughts of northern Nigerian rivers. Hydrological Sciences Journal, 39 (1), 19–34. doi:10.1080/02626669409492717.
  • Koch, R.W. and Smillie, G.M., 1986. Bias in hydrologic prediction using log-transformed regression models. Journal of the American Water Resources Association, 22 (5), 717–723. doi:10.1111/j.1752-1688.1986.tb00744.x.
  • Kosmas, C., Danalatos, N., and Kosmopoulou, P., 2001. Soil erosion in Greece. In: J. Boardman and J. Poesen, eds. Soil erosion. Chichester: J. Wiley and Sons Ltd, 279–288.
  • Kottek, M., et al., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15 (3), 259–263. doi:10.1127/0941-2948/2006/0130.
  • Koulouri, M. and Giourga, C., 2007. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena, 69 (3), 274–281. doi:10.1016/j.catena.2006.07.001.
  • Koutsoyiannis, D., 2000. Broken line smoothing: a simple method for interpolating and smoothing data series. Environmental Modelling and Software, 15 (2), 139–149. doi:10.1016/S1364-8152(99)00026-2.
  • Koutsoyiannis, D., 2008. Probability and statistics for geophysical processes. Athens: National Technical University of Athens publishing.
  • Koutsoyiannis, D., 2016. Statistical hydrology. 5th ed. Athens: National Technical University of Athens publishing.
  • Koutsoyiannis, D. and Tarla, K., 1987. Sediment yield estimations in Greece. Technica Chronica, A-7 (3), 127–154. (In Greek).
  • Kumar, R., et al., 2003. Development of regional flood frequency relationships using L-moments for middle Ganga plains subzone 1(f) of India. Water Resources Management, 17 (4), 243–257. doi:10.1023/A:1024770124523.
  • Lecce, S.A., et al., 2006. Seasonal controls on sediment delivery in a small coastal plain watershed, North Carolina, USA. Geomorphology, 73 (3–4), 246–260. doi:10.1016/j.geomorph.2005.05.017.
  • Lenzi, M.A., Mao, L., and Comiti, F., 2003. Interannual variation of suspended sediment load and sediment yield in an alpine catchment. Hydrological Sciences Journal, 48 (6), 899–915. doi:10.1623/hysj.48.6.899.51425.
  • Lewis, J., 1996. Turbidity-controlled suspended sediment sampling for runoff-event load estimation. Water Resources Research, 32 (7), 2299–2310. doi:10.1029/96WR00991.
  • Livadas, G.K., 1976. Book 5: the climate of Greece. In: Lessons of climatology. Thessaloniki: Aristotle University Publications.
  • Lloyd, D., Koenings, J.P., and Laperriere, J.D., 1987. Effects of turbidity in Fresh Waters of Alaska. North American Journal of Fisheries Management, 7 (1), 18–33. doi:10.1577/1548-8659(1987)7<18:EOTIFW>2.0.CO;2.
  • Lohani, A.K., Goel, N.K., and Bhatia, K.K.S., 2007. Deriving stage-discharge-sediment concentration relationships using fuzzy logic. Hydrological Sciences Journal, 52 (4), 793–807. doi:10.1623/hysj.52.4.793.
  • Mao, L., et al., 2009. Sediment transfer processes in two Alpine catchments of contrasting morphological settings. Journal of Hydrology, 364 (1–2), 88–98. doi:10.1016/j.jhydrol.2008.10.021.
  • Markonis, Y., et al., 2017. Temporal and spatial variability of rainfall over Greece. Theoretical and Applied Climatology, 130 (1–2), 217–232. doi:10.1007/s00704-016-1878-7.
  • McBean, E.A. and Al‐Nassri, S., 1988. Uncertainty in suspended sediment transport curves. Journal of Hydraulic Engineering, 114 (1), 63–74. doi:10.1061/(ASCE)0733-9429(1988)114:1(63).
  • McKee, L.J., Hossain, S., and Eyre, B.D., 2002. Magnitude-frequency analysis of suspended sediment loads in the subtropical Richmond River basin, northern New South Wales, Australia. In: Proceedings of the Symposium ‘The Structure, Function and Management Implications of Fluvial Sedimentary Systems’, September 2002. Alice Springs. IAHS Publication No. 276.
  • Migiros, G., et al., 2008. Geological and Tectonic study of the fissured Rocks of the Hellenides and their hydrogeological pattern. In: G. Migiros, G. Stamatis, and G. Stournaras, eds. Proceedings of the 8th International Hydrogeological Congress of Greece – 3rd MEM Workshop on Fissured Rocks Hydrology, 2008. Athens.
  • Mimikou, M., 1982. An investigation of suspended sediment rating curves in western and northern Greece. Hydrological Sciences Journal, 27 (3), 369–383. doi:10.1080/02626668209491116.
  • Modarres, R., 2008. Regional frequency distribution type of low flow in North of Iran by L-moments. Water Resources Management, 22 (7), 823–841. doi:10.1007/s11269-007-9194-8.
  • Modarres, R. and Sarhadi, A., 2011. Statistically-based regionalization of rainfall climates of Iran. Global and Planetary Change, 75 (1–2), 67–75. doi:10.1016/j.gloplacha.2010.10.009.
  • Morgan, R.P.C., 2005. Soil erosion and conservation. 3rd ed. New Jersey: Blackwell Publishing Ltd.
  • Mountrakis, D., 1985. Geology of Greece. Thessaloniki: Aristotle University Studio Press.
  • Myung, I.J., 2003. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47 (1), 90–100. doi:10.1016/S0022-2496(02)00028-7.
  • Nash, D.B., 1994. Effective sediment-transporting discharge from magnitude-frequency analysis. The Journal of Geology, 102 (1), 79–95. doi:10.1086/629649.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • Neal, C., et al., 2006. Suspended sediment and particulate phosphorus in surface waters of the upper Thames Basin, UK. Journal of Hydrology, 330 (1–2), 142–154. doi:10.1016/j.jhydrol.\2006.04.016.
  • Panagos, P., et al., 2016. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena, 137, 161–172. doi:10.1016/j.catena.2015.09.015.
  • Papalexiou, S.M., 2018a. Unified theory for stochastic modelling of hydroclimatic processes: preserving marginal distributions, correlation structures, and intermittency. Advances in Water Resources, 115, 234–252. doi:10.1016/j.advwatres.2018.02.013.
  • Papalexiou, S.M., et al., 2018b. Precise temporal disaggregation preserving marginals and correlations (DiPMaC) for stationary and nonstationary processes. Water Resources Research, 54 (10), 7435–7458. doi:10.1029/2018WR022726.
  • Peters-Kümmerly, B.E., 1973. Untersuchungen über Zusammensetzung und Transport von Schwebstoffen n einigen Schweizer Flüssen. Geographica Helvetica, 28 (3), 137–151. doi:10.5194/gh-28-137-1973.
  • Phillips, J.M., et al., 1999. Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological Processes, 13 (7), 1035–1050. doi:10.1002/(SICI)1099-1085(199905)13:7<1035::AID-HYP788>3.0.CO;2-K.
  • Poulos, S., Collins, M., and Evans, G., 1996. Water-sediment fluxes of Greek rivers, southeastern Alpine Europe: annual yields, seasonal variability, delta formation and human impact. Zeitschrift fur Geomorphologie, 40 (2), 243–261. doi:10.1127/zfg/40/1996/243.
  • R Core Team, 2021. R: a language and environment for statistical computing [software]. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/ [ Accessed 05 January 2022].
  • Ramachandra Rao, A. and Hamed, K.H., 2019. Flood frequency analysis. Boca Raton: CRC Press.
  • Richards, R.P. and Holloway, J., 1987. Monte Carlo studies of sampling strategies for estimating tributary loads. Water Resources Research, 23 (10), 1939–1948. doi:10.1029/WR023i010p01939.
  • Rovira, A. and Batalla, R.J., 2006. Temporal distribution of suspended sediment transport in a Mediterranean basin: the Lower Tordera (NE Spain). Geomorphology, 79 (1–2), 58–71. doi:10.1016/j.geomorph.2005.09.016.
  • Sarhadi, A., Soltani, S., and Modarres, R., 2012. Probabilistic flood inundation mapping of ungauged rivers: linking GIS techniques and frequency analysis. Journal of Hydrology, 458–459, 68–86. doi:10.1016/j.jhydrol.2012.06.039.
  • Schleiss, A.J., et al., 2016. Reservoir sedimentation. Journal of Hydraulic Research, 54 (6), 595–614. doi:10.1080/00221686.2016.1225320.
  • Sharma, N., et al., 2015. Runoff and sediment yield modeling using ANN and support vector machines: a case study from Nepal watershed. Modeling Earth Systems and Environment, 1 (3), 1–8. doi:10.1007/s40808-015-0027-0.
  • Soler, M., et al., 2007. Frequency-magnitude relationships for precipitation, stream flow and sediment load events in a small Mediterranean basin (Vallcebre basin, Eastern Pyrenees). Catena, 71 (1), 164–171. doi:10.1016/j.catena.2006.06.009.
  • Song, S. and Singh, V.P., 2010. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24 (5), 783–805. doi:10.1007/s00477-010-0364-5.
  • Steegen, A., et al., 2000. Sediment export by water from an agricultural catchment in the Loam Belt of central Belgium. Geomorphology, 33 (1–2), 25–36. doi:10.1016/S0169-555X(99)00108-7.
  • Syvitski, J.P., et al., 2000. Estimating fluvial sediment transport: the rating parameters. Water Resources Research, 36 (9), 2747–2760. doi:10.1029/2000WR900133.
  • Tanaka, T., et al., 1982. Reconnaissance study on suspended sediment discharge during a storm event. University of Tsukuba: Annual Report of the Institute of Geoscience, 9, 32–35.
  • Teugels, J.L., 1975. The class of subexponential distributions. The Annals of Probability, 3 (6), 1000–1011. doi:10.1214/aop/1176996225.
  • Tramblay, Y., St-Hilaire, A., and Ouarda, B.M.J.T., 2008. Frequency analysis of maximum annual suspended sediment concentrations in North America. Hydrological Sciences Journal, 53 (1), 236–252. doi:10.1623/hysj.53.1.236.
  • Udluft, P. and Zagana, E., 1994. Calculation of the water budget of the Venetikos catchment area. Bulletin of the Geological Society of Greece, 30 (4), 267–274.
  • US EPA, 1996. National water quality inventory report to congress. Available from https://www.epa.gov/waterdata/1996-national-water-quality-inventory-report-congress [ Accessed 9 Nov 2021].
  • US EPA, 2017. National water quality inventory report to congress. Available from https://www.epa.gov/waterdata/2017-national-water-quality-inventory-report-congress [ Accessed 6 Jan 2022].
  • USGS, 1982. Guidelines for determining flood flow frequency. Reston, Virginia: US Geological Survey.
  • van Rompaey, A.J.J., et al., 2001. Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms, 26 (11), 1221–1236. doi:10.1002/esp.275.
  • van Sickle, J., 1981. Long-term distributions of annual sediment yields from small watersheds. Water Resources Research, 17 (3), 659–663. doi:10.1029/WR017i003p00659.
  • Vogel, R.M. and Castellarin, A., 2017. Risk, reliability and return periods and hydrologic design. In: V.P. Singh, ed. Handbook of applied hydrology. 2nd ed. New York: McGraw Hill Book Co, 78-1‒78-9.
  • Volpi, E., et al., 2015. One hundred years of return period: strengths and limitations. Water Resources Research, 51 (10), 8570–8585. doi:10.1002/2015WR017820.
  • Walling, D.E., 1977a. Limitations of the rating curve technique for estimating suspended sediment loads, with particular reference to British rivers. In: Proceedings of the Symposium ‘Erosion and Solid Matter Transport in Inland Waters’, July 1977 Paris. IAHS Publication No. 122. England: Wallingford, 34–48.
  • Walling, D.E., 1977b. Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, 13 (3), 531–538. doi:10.1029/WR013i003p00531.
  • Walling, D.E., 1983. The sediment delivery problem. Journal of Hydrology, 65 (1–3), 209–237. doi:10.1016/0022-1694(83)90217-2.
  • Walling, D.E., 1974. Suspended sediment and solute yields from a small catchment prior to urbanization. In: K.J. Gregory and D.E. Walling, eds. Fluvial processes in instrumented watersheds. Vol. 6. London: Inst. British Geographers Special Publication No, 169–192.
  • Walling, D.E. and Webb, B.W., 1988. The reliability of rating curve estimates of suspended sediment yield: some further comments. In: M.P. Bordas and D.E. Walling, eds. Proceedings of the Symposium ‘Sediment Budgets’, December 1988 Porto Alegre. IAHS Publication No. 174. UK: Wallingford, 337‒350.
  • Waters, T.F., 1995. Sediments in streams: sources, biological effects and control. Bethesda, MD (USA): American Fisheries Society.
  • Williams, G.P., 1989. Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology, 111 (1–4), 89–106. doi:10.1016/0022-1694(89)90254-0.
  • Woodward, J.C., 1995. Patterns of erosion and suspended sediment yield in Mediterranean river basins. In: I.D.L. Foster, A.M. Gurnell, and B.W. Webb, eds. Sediment and water quality in river catchments. Chichester: J. Wiley and Sons Ltd, 365–389.
  • Yang, L., et al., 2016. Mathematical programming for piecewise linear regression analysis. Expert Systems with Applications, 44, 156–167. doi:10.1016/j.eswa.2015.08.034.