189
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Improving accuracy of neuro fuzzy and support vector regression for drought modelling using grey wolf optimization

, & ORCID Icon
Pages 1582-1597 | Received 26 Aug 2021, Accepted 20 Apr 2022, Published online: 25 Jul 2022

References

  • Abbasi, A., et al., 2019. Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake. Theoretical and Applied Climatology, 138 (1–2), 553–567. doi:10.1007/s00704-019-02825-9
  • Abramowitz, M. and Stegun, I.A., 1965. Handbook of mathematical functions. Vol. 361, New York: Dover Publications.
  • Adamowski, J.F., 2008. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology, 353 (3–4), 247–266. doi:10.1016/j.jhydrol.2008.02.013
  • Aghelpour, P., Bahrami-Pichaghchi, H., and Kisi, O., 2020. Comparison of three different bio-inspired algorithms to improve ability of neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Computers and Electronics in Agriculture, 170, 105279. doi:10.1016/j.compag.2020.105279
  • Alam, N.M., et al., 2014. Stochastic model for drought forecasting for Bundelkhand region in Central India. Indian Journal of Agricultural Sciences, 84 (1), 79–84.
  • Angelidis, P., et al., 2012. Computation of drought index SPI with alternative distribution functions. Water Resources Management, 26 (9), 2453–2473. doi:10.1007/s11269-012-0026-0
  • Asefa, T., et al., 2006. Multi-time scale stream flow predictions: the support vector machines approach. Journal of Hydrology, 318 (1–4), 7–16. doi:10.1016/j.jhydrol.2005.06.001
  • Bacanli, U.G., Firat, M., and Dikbas, F., 2009. Adaptive neuro-fuzzy inference system for drought forecasting. Stochastic Environmental Research and Risk Assessment, 23 (8), 1143–1154. doi:10.1007/s00477-008-0288-5
  • Belayneh, A. and Adamowski, J., 2012. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Applied Computational Intelligence and Soft Computing, 2012, 1–13. doi:10.1155/2012/794061
  • Belayneh, A. and Adamowski, J., 2013. Drought forecasting using new machine learning methods/Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod. Journal of Water and Land Development, 18 (9), 3–12. doi:10.2478/jwld-2013-0001
  • Belayneh, A., et al., 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology, 508, 418–429. doi:10.1016/j.jhydrol.2013.10.052
  • Belayneh, A., et al., 2016. Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction. Atmospheric Research, 172-173, 37–47. doi:10.1016/j.atmosres.2015.12.017
  • Bokde, N.D., Yaseen, Z.M., and Andersen, G.B., 2020. Forecast TB—An R package as a test-bench for time series forecasting—Application of wind speed and solar radiation modelling. Energies, 13 (10), 2578. doi:10.3390/en13102578
  • Box, G.E.P. and Jenkins, G.M., 1976. Time Series Analysis, Forecasting and Control. San Francisco, NJ: Holden Day, Prentice-Hall.
  • Box, G.E.P., Jenkins, G.M., and Reinsel, G.C., 1994. Time Series Analysis, Forecasting and. Englewood Cliffs, NJ, USA: Prentice Hall.
  • Chai, T. and Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? –Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7 (3), 1247–1250. doi:10.5194/gmd-7-1247-2014
  • Choubin, B., Malekian, A., and Golshan, M., 2016. Application of several data-driven techniques to predict a standardized precipitation index. Atmósfera, 29 (2), 121–128.
  • Çimen, M. and Kisi, O., 2009. Comparison of two different data-driven techniques in modelling lake level fluctuations in Turkey. Journal of Hydrology, 378 (3–4), 253–262. doi:10.1016/j.jhydrol.2009.09.029
  • Dai, A., 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews. Climate Change, 2 (1), 45–65.
  • Danandeh Mehr, A., 2018. An improved gene expression programming model for streamflow forecasting in intermittent streams. Journal of Hydrology, 563, 669–678. doi:10.1016/j.jhydrol.2018.06.049
  • Dehghani, M., et al., 2014. Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte‐Carlo simulation. International Journal of Climatology, 34 (4), 1169–1180. doi:10.1002/joc.3754
  • Deo, R.C., Kisi, O., and Singh, V.P., 2017a. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmospheric Research, 184, 149–175. doi:10.1016/j.atmosres.2016.10.004
  • Deo, R.C., et al., 2018. Drought prediction with standardized precipitation and evapotranspiration index and support vector regression models. In: Integrating disaster science and management. Amsterdam, Netherlands: Elsevier, 151–174.
  • Djerbouai, S. and Souag-Gamane, D., 2016. Drought forecasting using neural networks, wavelet neural networks, and stochastic models: case of the Algerois Basin in North Algeria. Water Resources Management, 30 (7), 2445–2464. doi:10.1007/s11269-016-1298-6
  • Durdu, Ö.F., 2010. Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey. Stochastic Environmental Research and Risk Assessment, 24 (8), 1145–1162. doi:10.1007/s00477-010-0366-3
  • Edwards, D.C., 1997. Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report 97‐2. Fort Collins: Department of Atmospheric Science, Colorado State University.
  • Edwards, C.A., 2020. Sustainable agricultural systems. Boca Raton, FL: CRC Press.
  • Emadodin, I., Reinsch, T., and Taube, F., 2019. Drought and desertification in Iran. Hydrology, 6 (3), 66. doi:10.3390/hydrology6030066
  • European drought observatory, 2020. Edo indicator factsheet. Available from: https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi.pdf [Accessed 1 May 2020].
  • Farahmand, A. and AghaKouchak, A., 2015. A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140–145. doi:10.1016/j.advwatres.2014.11.012
  • Fung, K.F., et al., 2020. Drought forecasting: a review of modelling approaches 2007–2017. Journal of Water and Climate Change, 11 (3), 771–799. doi:10.2166/wcc.2019.236
  • Ghorbani, H., Vali, A., and Zarepour, H., 2020. Prediction and investigation of meteorological drought using SARIMA time series and SPI index in Isfahan Province. JWSS-Isfahan University of Technology, 23 (4), 313–328.
  • Gidey, E., et al., 2018. Modelling the spatio-temporal meteorological drought characteristics using the standardized precipitation index (SPI) in raya and its environs, northern Ethiopia. Earth Systems and Environment, 2 (2), 281–292. doi:10.1007/s41748-018-0057-7
  • Guenang, G.M. and Kamga, F.M., 2014. Computation of the standardized precipitation index (SPI) and its use to assess drought occurrences in Cameroon over recent decades. Journal of Applied Meteorology and Climatology, 53 (10), 2310–2324. doi:10.1175/JAMC-D-14-0032.1
  • Guenang, G.M., et al., 2019. Sensitivity of SPI to distribution functions and correlation between its values at different time scales in Central Africa. Earth Systems and Environment, 3 (2), 203–214. doi:10.1007/s41748-019-00102-3
  • Gumus, V. and Algin, H.M., 2017. Meteorological and hydrological drought analysis of the Seyhan− Ceyhan River Basins, Turkey. Meteorological Applications, 24 (1), 62–73. doi:10.1002/met.1605
  • Guttman, N.B., 1998. Comparing the palmer drought index and the standardized precipitation index 1. JAWRA Journal of the American Water Resources Association, 34 (1), 113–121. doi:10.1111/j.1752-1688.1998.tb05964.x
  • Hamed, K.H. and Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204 (1–4), 182–196. doi:10.1016/S0022-1694(97)00125-X
  • Han, P., Wang, P.X., and Zhang, S.Y., 2010. Drought forecasting based on the remote sensing data using ARIMA models. Mathematical and Computer Modelling, 51 (11–12), 1398–1403. doi:10.1016/j.mcm.2009.10.031
  • Hao, P.Y., Chiang, J.H., and Lin, Y.H., 2009. A new maximal-margin spherical-structured multi-class support vector machine. Applied Intelligence, 30 (2), 98–111. doi:10.1007/s10489-007-0101-z
  • Hayes, M.J., et al., 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society, 80 (3), 429–438. doi:10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2
  • Hayes, A.F., Glynn, C.J., and Shanahan, J., 2005. Validating the willingness to self-censor scale: individual differences in the effect of the climate of opinion on opinion expression. International Journal of Public Opinion Research, 17 (4), 443–455. doi:10.1093/ijpor/edh072
  • Jalalkamali, A., Moradi, M., and Moradi, N., 2015. Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. International Journal of Environmental Science and Technology, 12 (4), 1201–1210. doi:10.1007/s13762-014-0717-6
  • Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. doi:10.1109/21.256541
  • Kalantar, B., et al., 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, 9 (1), 49–69. doi:10.1080/19475705.2017.1407368
  • Karimi, M., et al., 2019. Analysis and prediction of meteorological drought using SPI index and ARIMA model in the Karkheh River Basin, Iran. In: A.M. Melesse, W. Abtew, and G. Senay, eds. Extreme Hydrology and Climate Variability. Amsterdam, Netherlands: Elsevier, 343–353.
  • Keshavarz, M., Karami, E., and Vanclay, F., 2013. The social experience of drought in rural Iran. Land Use Policy, 30 (1), 120–129. doi:10.1016/j.landusepol.2012.03.003
  • Kia, M.B., et al., 2012. An artificial neural network model for flood simulation using GIS: johor River Basin, Malaysia. Environmental Earth Sciences, 67 (1), 251–264. doi:10.1007/s12665-011-1504-z
  • Kisi, O. and Cimen, M., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 399 (1–2), 132–140. doi:10.1016/j.jhydrol.2010.12.041
  • Kisi, O., et al., 2015. A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Applied Mathematics and Computation, 270, 731–743. doi:10.1016/j.amc.2015.08.085
  • Kisi, O., et al., 2019. Drought forecasting using novel heuristic methods in a semi-arid environment. Journal of Hydrology, 578, 124053. doi:10.1016/j.jhydrol.2019.124053
  • Legates, D.R. and McCabe, G.J., Jr, 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018
  • Li, D. and Simske, S., 2010. Example based single-frame image super-resolution by support vector regression. Journal of Pattern Recognition Research, 5 (1), 104–118. doi:10.13176/11.253
  • Liong, S.Y. and Sivapragasam, C., 2002. Flood stage forecasting with support vector machines 1. JAWRA Journal of the American Water Resources Association, 38 (1), 173–186. doi:10.1111/j.1752-1688.2002.tb01544.x
  • Lloyd‐Hughes, B. and Saunders, M.A., 2002. A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22 (13), 1571–1592. doi:10.1002/joc.846
  • Massey, F.J., Jr, 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46 (253), 68–78. doi:10.1080/01621459.1951.10500769
  • McKee, T.B., Doesken, N.J., and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17 (22), 179–183. January.
  • Mehdizadeh, S., Behmanesh, J., and Khalili, K., 2017a. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model. Journal of Hydrology, 554, 721–742. doi:10.1016/j.jhydrol.2017.09.056
  • Mehdizadeh, S. and Sales, A.K., 2018. A comparative study of autoregressive, autoregressive moving average, gene expression programming and Bayesian networks for estimating monthly streamflow. Water Resources Management, 32 (9), 3001–3022. doi:10.1007/s11269-018-1970-0
  • Mehdizadeh, S., 2018. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: offering a new approach for lagged ETo data-based modelling. Journal of Hydrology, 559, 794–812. doi:10.1016/j.jhydrol.2018.02.060
  • Mehdizadeh, S., et al., 2020. Drought modelling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 587, 125017. doi:10.1016/j.jhydrol.2020.125017
  • Mehr, A.D., Kahya, E., and Özger, M., 2014. A gene–wavelet model for long lead time drought forecasting. Journal of Hydrology, 517, 691–699. doi:10.1016/j.jhydrol.2014.06.012
  • Mirjalili, S., Mirjalili, S.M., and Lewis, A., 2014. Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007
  • Mishra, A.K. and Desai, V.R., 2006. Drought forecasting using feed-forward recursive neural network. Ecological Modelling, 198 (1–2), 127–138. doi:10.1016/j.ecolmodel.2006.04.017
  • Mishra, A.K., Desai, V.R., and Singh, V.P., 2007. Drought forecasting using a hybrid stochastic and neural network model. Journal of Hydrologic Engineering, 12 (6), 626–638. doi:10.1061/(ASCE)1084-0699(2007)12:6(626)
  • Moazenzadeh, R., et al., 2018. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics, 12 (1), 584–597. doi:10.1080/19942060.2018.1482476
  • Modarres, R. and da Silva, V.D.P.R., 2007. Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments, 70 (2), 344–355. doi:10.1016/j.jaridenv.2006.12.024
  • Mokhtarzad, M., et al., 2017. Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environmental Earth Sciences, 76 (21), 729. doi:10.1007/s12665-017-7064-0
  • Morid, S., Smakhtin, V., and Moghaddasi, M., 2006. Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26 (7), 971–985. doi:10.1002/joc.1264
  • Muro, C., et al., 2011. Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioural Processes, 88 (3), 192–197. doi:10.1016/j.beproc.2011.09.006
  • Naresh Kumar, M., et al., 2009. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications: A Journal of Forecasting, Practical Applications, Training Techniques and Modelling, 16 (3), 381–389. doi:10.1002/met.136
  • Nguyen, L.B., et al., 2015. Adaptive Neuro–Fuzzy inference system for drought forecasting in the Cai River Basin in Vietnam. Journal of the Faculty of Agriculture, Kyushu University, 60 (2), 405–415. doi:10.5109/1543403
  • Nourani, V., et al., 2014. Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358–377. doi:10.1016/j.jhydrol.2014.03.057
  • Olsson, M. and Soder, L., 2008. Modelling real-time balancing power market prices using combined SARIMA and Markov processes. IEEE Transactions on Power Systems, 23 (2), 443–450. doi:10.1109/TPWRS.2008.920046
  • Rafferty, G., 2021. Forecasting time series data with facebook prophet. Birmingham, UK: Packt Publishing.
  • Ramezani, Y. and Tahroudi, M.N., 2020. Improving the performance of the SPEI using four-parameter distribution function. Theoretical and Applied Climatology, 139 (3), 1151–1162. doi:10.1007/s00704-019-03034-0
  • Rezaeianzadeh, M., Stein, A., and Cox, J.P., 2016. Drought forecasting using Markov chain model and artificial neural networks. Water Resources Management, 30 (7), 2245–2259. doi:10.1007/s11269-016-1283-0
  • Rhee, J. and Im, J., 2017. Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data. Agricultural and Forest Meteorology, 237-238, 105–122. doi:10.1016/j.agrformet.2017.02.011
  • Sachindra, D.A., et al., 2018. Statistical downscaling of precipitation using machine learning techniques. Atmospheric Research, 212, 240–258. doi:10.1016/j.atmosres.2018.05.022
  • Shiau, J.T., 2020. Effects of gamma-distribution variations on SPI-based stationary and nonstationary drought analyses. Water Resources Management, 34, 2081–2095.
  • Shiri, J. and Kisi, O., 2010. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology, 394 (3–4), 486–493. doi:10.1016/j.jhydrol.2010.10.008
  • Shirmohammadi, B., et al., 2013. Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran). Natural Hazards, 69 (1), 389–402. doi:10.1007/s11069-013-0716-9
  • Spinoni, J., et al., 2014. World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34 (8), 2792–2804. doi:10.1002/joc.3875
  • Stagge, J.H., et al., 2015. Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35 (13), 4027–4040. doi:10.1002/joc.4267
  • Sudheer, C., et al., 2014. A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Computing & Applications, 24 (6), 1381–1389. doi:10.1007/s00521-013-1341-y
  • Takagi, T. and Sugeno, M., 1985. Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15 (1), 116–132. doi:10.1109/TSMC.1985.6313399
  • Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106 (D7), 7183–7192. doi:10.1029/2000JD900719
  • Thom, H.C., 1958. A note on the gamma distribution. Monthly Weather Review, 86 (4), 117–122. doi:10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2
  • Tikhamarine, Y., et al., 2020. Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm. Journal of Hydrology, 582, 124435. doi:10.1016/j.jhydrol.2019.124435
  • Tosunoglu, F. and Kisi, O., 2017. Trend analysis of maximum hydrologic drought variables using Mann–Kendall and Şen’s innovative trend method. River Research and Applications, 33 (4), 597–610. doi:10.1002/rra.3106
  • Vapnik, V., Golowich, S., and Smola, A., 1996. Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information Processing Systems, 9, 281–287.
  • Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23 (7), 1696–1718. doi:10.1175/2009JCLI2909.1
  • Willmott, C.J., 1981. On the validation of models. Physical Geography, 2 (2), 184–194. doi:10.1080/02723646.1981.10642213
  • Willmott, C.J., Robeson, S.M., and Matsuura, K., 2012. A refined index of model performance. International Journal of Climatology, 32 (13), 2088–2094. doi:10.1002/joc.2419
  • Zhang, G.P., 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. doi:10.1016/S0925-2312(01)00702-0
  • Zhang, F., Dai, H., and Tang, D., 2014. A conjunction method of wavelet transform-particle swarm optimization-support vector machine for streamflow forecasting. Journal of Applied Mathematics, 2014, 1–10.
  • Zhang, Y., et al., 2017. Multi-models for SPI drought forecasting in the north of Haihe River Basin, China. Stochastic Environmental Research and Risk Assessment, 31 (10), 2471–2481. doi:10.1007/s00477-017-1437-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.