372
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A conceptual model for simulating streamflow in a changing snow-covered catchment: application to the data-sparse upper Brahmaputra River basin

, , &
Pages 1669-1682 | Received 21 Sep 2021, Accepted 12 Apr 2022, Published online: 10 Aug 2022

References

  • Apurv, T., et al., 2015. Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. Journal of Hydrology, 527, 281–291. doi:10.1016/j.jhydrol.2015.04.056
  • Arheimer, B. and Lindström, G., 2019. Detecting changes in river flow caused by wildfires, storms, urbanization, regulation, and climate across Sweden. Water Resources Research, 55 (11), 8990–9005. doi:10.1029/2019WR024759
  • Armstrong, R.L., et al., 2019. Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow. Regional Environmental Change, 19 (5), 1249–1261. doi:10.1007/s10113-018-1429-0
  • Arora, M., et al., 2008. Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin. Water Resources Management, 22 (10), 1461–1475. doi:10.1007/s11269-007-9237-1
  • Bai, P., et al., 2016. Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau. Journal of Geophysical Research: Atmospheres, 121 (20), 12,180–12,197. doi:10.1002/2016JD025501
  • Borsch, S., et al., 2022. Russian Rivers Streamflow Forecasting Using Hydrograph Extrapolation Method. Hydrology, 9 (1), 1. doi:10.3390/hydrology9010001
  • Braun, L.N. and Renner, C.B., 1992. Application of a conceptual runoff model in different physiographic regions of Switzerland. Hydrological Sciences Journal, 37 (3), 217–231. doi:10.1080/02626669209492583
  • Butt, M.J. and Bilal, M., 2011. Application of snowmelt runoff model for water resource management. Hydrological Processes, 25 (24), 3735–3747. doi:10.1002/hyp.8099
  • Cai, M., et al., 2017. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: past, present, and future. PloS One, 12 (5), e0176813–e0176813. doi:10.1371/journal.pone.0176813
  • Chandel, V.S. and Ghosh, S., 2021. Components of Himalayan River Flows in a Changing Climate. Water Resources Research, 57 (2), e2020WR027589. doi:10.1029/2020WR027589
  • Chen, X., et al., 2017. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: how snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resources Research, 53 (3), 2431–2466. doi:10.1002/2016WR019656
  • Cortés, G., Girotto, M., and Margulis, S.A., 2014. Analysis of sub-pixel snow and ice extent over the extratropical Andes using spectral unmixing of historical Landsat imagery. Remote Sensing of Environment, 141, 64–78. doi:10.1016/j.rse.2013.10.023
  • Cuo, L., et al., 2014. Characteristics and changes of streamflow on the Tibetan Plateau: a review. Journal of Hydrology: Regional Studies, 2, 49–68. doi:10.1016/j.ejrh.2014.08.004
  • Derksen, C. and Brown, R., 2012. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophysical Research Letters, 39 (19). doi:10.1029/2012gl053387
  • Duan, Q.Y., Gupta, V.K., and Sorooshian, S., 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76 (3), 501–521. doi:10.1007/BF00939380
  • Egli, L., Jonas, T., and Meister, R., 2009. Comparison of different automatic methods for estimating snow water equivalent. Cold Regions Science and Technology, 57 (2), 107–115. doi:10.1016/j.coldregions.2009.02.008
  • Evaristo, J. and McDonnell, J.J., 2019. Retracted article: global analysis of streamflow response to forest management. Nature, 570 (7762), 455–461. doi:10.1038/s41586-019-1306-0
  • Follum, M.L., Niemann, J.D., and Fassnacht, S.R., 2019. A comparison of snowmelt-derived streamflow from temperature-index and modified-temperature-index snow models. Hydrological Processes, 33 (23), 3030–3045. doi:10.1002/hyp.13545
  • Freudiger, D., et al., 2017. Snow redistribution for the hydrological modeling of alpine catchments. WIREs Water, 4 (5), e1232. doi:10.1002/wat2.1232
  • Gao, B., et al., 2018. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau. The Cryosphere, 12 (2), 657–673. doi:10.5194/tc-12-657-2018
  • Gichamo, T.Z. and Tarboton, D.G., 2019. Ensemble streamflow forecasting using an energy balance snowmelt model coupled to a distributed hydrologic model with assimilation of snow and streamflow observations. Water Resources Research, n/a (n/a). doi:10.1029/2019WR025472
  • Girons Lopez, M., et al., 2020. Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe. Hydrology and Earth System Sciences, 24 (9), 4441–4461. doi:10.5194/hess-24-4441-2020
  • Gregorio, L.D., et al., 2019. A novel data fusion technique for snow cover retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (8), 2862–2877. doi:10.1109/JSTARS.2019.2920676
  • Han, P., et al., 2019. Improved understanding of snowmelt runoff from the headwaters of China’s Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sensing of Environment, 224, 44–59. doi:10.1016/j.rse.2019.01.041
  • Harpold, A.A. and Brooks, P.D., 2018. Humidity determines snowpack ablation under a warming climate. Proceedings of the National Academy of Sciences, 115 (6), 1215–1220. doi:10.1073/pnas.1716789115
  • Hock, R., 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology, 282 (1), 104–115. doi:10.1016/S0022-1694(03)00257-9
  • Huziy, O., et al., 2013. Analysis of streamflow characteristics over Northeastern Canada in a changing climate. Climate Dynamics, 40 (7), 1879–1901. doi:10.1007/s00382-012-1406-0
  • Immerzeel, W.W., Beek, L.P.H.V., and Bierkens, M.F.P., 2010. Climate change will affect the Asian Water Towers. Science, 328 (5984), 1382–1385. doi:10.1126/science.1183188
  • Jeong, D.I., Sushama, L., and Khaliq, M.N., 2017. Attribution of spring snow water equivalent (SWE) changes over the northern hemisphere to anthropogenic effects. Climate Dynamics, 48 (11–12), 3645–3658. doi:10.1007/s0038
  • Jothityangkoon, C. and Sivapalan, M., 2003. Towards estimation of extreme floods: examination of the roles of runoff process changes and floodplain flows. Journal of Hydrology, 281 (3), 206–229. doi:10.1016/S0022-1694(03)00237-3
  • Kebede, M.G., et al., 2020. Remote sensing-based river discharge estimation for a small river flowing over the high mountain regions of the Tibetan Plateau. International Journal of Remote Sensing, 41 (9), 3322–3345. doi:10.1080/01431161.2019.1701213
  • Khandu, et al., 2016. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin. Water Resources Research, 52 (3), 2240–2258. doi:10.1002/2015WR018113
  • Kim, S., et al., 2018. Building a flood warning framework for ungauged locations using low resolution, open access remotely sensed surface soil moisture, precipitation, soil and topographic information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (2), 375–387. doi:10.1109/JSTARS.2018.2790409
  • Kim, S. and Sharma, A., 2019. The role of floodplain topography in deriving basin discharge using passive microwave remote sensing. Water Resources Research, 55 (2), 1707–1716. doi:10.1029/2018WR023627
  • Kisi, O., Shiri, J., and Tombul, M., 2013. Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117. doi:10.1016/j.cageo.2012.07.001
  • Kong, W. and Chiang, J.C.H., 2020. Interaction of the westerlies with the tibetan plateau in determining the mei-yu termination. Journal of Climate, 33 (1), 339–363. doi:10.1175/jcli-d-19-0319.1
  • Koppes, M., et al., 2015. Sensitivity of glacier runoff projections to baseline climate data in the Indus River basin. Frontiers in Earth Science, 3 (59). doi:10.3389/feart.2015.00059
  • Kumar, V., Singh, P., and Singh, V., 2007. Snow and glacier melt contribution in the Beas River at Pandoh Dam, Himachal Pradesh, India. Hydrological Sciences Journal, 52 (2), 376–388. doi:10.1623/hysj.52.2.376
  • Legates, D.R. and McCabe, G.J., Jr, 1999. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018
  • Li, F., et al., 2013. The impact of climate change on runoff in the southeastern Tibetan Plateau. Journal of Hydrology, 505, 188–201. doi:10.1016/j.jhydrol.2013.09.052
  • Li, F., et al., 2014. Runoff predictions in ungauged catchments in southeast Tibetan Plateau. Journal of Hydrology, 511, 28–38. doi:10.1016/j.jhydrol.2014.01.014
  • Li, et al., 2018. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. International Journal of Climatology, 38 (2), 708–728. doi:10.1002/joc.5204
  • Li, D., et al., 2019. The value of accurate high-resolution and spatially continuous snow information to streamflow forecasts. Journal of Hydrometeorology, 20 (4), 731–749. doi:10.1175/jhm-d-18-0210.1
  • Liu, X., et al., 2017. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrology and Earth System Sciences, 21 (1), 169–181. doi:10.5194/hess-21-169-2017
  • Luojus, K., et al., 2011. Investigating hemispherical trends in snow accumulation using GlobSnow snow water equivalent data. Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, Vancouver, BC, IEEE, pp. 3772–3774. DOI:10.1109/IGARSS.2011.6050051
  • Lüthi, S., et al., 2019. Projections of alpine snow-cover in a high-resolution climate simulation. Atmosphere, 10 (8), 463. doi:10.3390/atmos10080463
  • Mark, S.R. and Martyn, P.C., 2014. Are temperature-index models appropriate for assessing climate change impacts on snowmelt. 82nd Annual Western Snow Conference. Proceedings of the Western Snow Conference, Durango, Colorado.
  • Martinec, J., 1975. Snowmelt-runoff model for stream flow forecasts. Hydrology Research, 6 (3), 145–154. doi:10.2166/nh.1975.0010
  • Masood, M., et al., 2015. Model study of the impacts of future climate change on the hydrology of Ganges–Brahmaputra–Meghna basin. Hydrology and Earth System Sciences, 19 (2), 747–770. doi:10.5194/hess-19-747-2015
  • Mehdizadeh, S., et al., 2019. Comparative assessment of time series and artificial intelligence models to estimate monthly streamflow: a local and external data analysis approach. Journal of Hydrology, 579, 124225. doi:10.1016/j.jhydrol.2019.124225
  • Miao, F., et al., 2019. Risk assessment of snowmelt-induced landslides based on GIS and an effective snowmelt model. Natural Hazards, 97 (3), 1151–1173. doi:10.1007/s11069-019-03693-2
  • Modarres, R. and Ouarda, T.B.M.J., 2013. Modeling rainfall–runoff relationship using multivariate GARCH model. Journal of Hydrology, 499, 1–18. doi:10.1016/j.jhydrol.2013.06.044
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Mudryk, L.R. et al., 2015. Characterization of Northern Hemisphere snow water equivalent datasets, 1981-2010. Journal of Climate, 28 (20), 8037–8051. doi:10.1175/JCLI-D-15-0229.1.
  • Mudryk, L.R. et al., 2018. Canadian snow and sea ice: Historical trends and projections. Cryosphere, 12 (4), 1157–1176. doi:10.5194/tc-12-1157-2018.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nayak, P.C., et al., 2013. Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology, 493, 57–67. doi:10.1016/j.jhydrol.2013.04.016
  • Niu, G.-Y. and Yang, Z.-L., 2007. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. Journal of Geophysical Research: Atmospheres, 112 (D21). doi:10.1029/2007jd008674
  • Nourani, V., Komasi, M., and Alami, M.T., 2012. Hybrid wavelet–genetic programming approach to optimize ANN modeling of rainfall–runoff process. Journal of Hydrologic Engineering, 17 (6), 724–741. doi:10.1061/(ASCE)HE.1943-5584.0000506
  • Nury, A.H., et al., 2019. Characterising uncertainty in precipitation downscaling using a Bayesian approach. Advances in Water Resources, 129, 189–197. doi:10.1016/j.advwatres.2019.05.018
  • Nury, A.H., et al., 2021. Modelling climate change impacts on the Brahmaputra streamflow resulting from changes in snowpack attributes. Journal of Hydrology, 603, 126998. doi:10.1016/j.jhydrol.2021.126998
  • Nury, A.H., et al., 2022. Projected changes in the tibetan plateau snowpack resulting from rising global temperatures. Journal of Geophysical Research: Atmospheres, 127 (6), e2021JD036201. doi:10.1029/2021JD036201
  • Orsolini, Y., et al., 2019. Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. The Cryosphere, 13 (8), 2221–2239. doi:10.5194/tc-13-2221-2019
  • Pervez, M.S. and Henebry, G.M., 2014. Projections of the Ganges–Brahmaputra precipitation—Downscaled from GCM predictors. Journal of Hydrology, 517, 120–134. doi:10.1016/j.jhydrol.2014.05.016
  • Pistocchi, A., et al., 2017. On the direct calculation of snow water balances using snow cover information. Water, 9 (11), 848.
  • Qi, W., Liu, J., and Chen, D., 2018. Evaluations and improvements of GLDAS2.0 and GLDAS2.1 forcing data’s applicability for basin scale hydrological simulations in the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 123 (23), 13,128–13,148. doi:10.1029/2018JD029116
  • Rahimi, S.R., et al., 2019. Exploring a variable-resolution approach for simulating regional climate over the tibetan plateau using VR-CESM. Journal of Geophysical Research: Atmospheres, 124 (8), 4490–4513. doi:10.1029/2018JD028925
  • Rashid, M.M. and Beecham, S., 2019. Simulation of streamflow with statistically downscaled daily rainfall using a hybrid of wavelet and GAMLSS models. Hydrological Sciences Journal, 64 (11), 1327–1339. doi:10.1080/02626667.2019.1630742
  • Ray, P.A., et al., 2015. Room for improvement: hydroclimatic challenges to poverty-reducing development of the Brahmaputra River basin. Environmental Science & Policy, 54, 64–80. doi:10.1016/j.envsci.2015.06.015
  • Riboust, P., et al., 2019. Revisiting a simple degree-day model for integrating satellite data: implementation of swe-sca hystereses. Journal of Hydrology and Hydromechanics, 67 (1), 70–81. doi:10.2478/johh-2018-0004
  • Ruan, H., et al., 2017. Runoff simulation by SWAT model using high-resolution gridded precipitation in the Upper Heihe River Basin, Northeastern Tibetan Plateau. Water, 9 (11), 866. doi:10.3390/w9110866
  • Ryken, A., et al., 2020. Sensitivity and model reduction of simulated snow processes: contrasting observational and parameter uncertainty to improve prediction. Advances in Water Resources, 135, 103473. doi:10.1016/j.advwatres.2019.103473
  • Sang, Y.-F., et al., 2016. Precipitation variability and response to changing climatic condition in the Yarlung Tsangpo River basin, China. Journal of Geophysical Research: Atmospheres, 121 (15), 8820–8831. doi:10.1002/2016JD025370
  • Shi, Y., et al., 2011. Climate change over the Yarlung Zangbo–Brahmaputra River Basin in the 21st century as simulated by a high resolution regional climate model. Quaternary International, 244 (2), 159–168. doi:10.1016/j.quaint.2011.01.041
  • Singh, P. and Bengtsson, L., 2004. Hydrological sensitivity of a large Himalayan basin to climate change. Hydrological Processes, 18 (13), 2363–2385. doi:10.1002/hyp.1468
  • Singh, P.R., Gan, T.Y., and Gobena, A.K., 2009. Evaluating a hierarchy of snowmelt models at a watershed in the Canadian Prairies. Journal of Geophysical Research: Atmospheres, 114 (D4). doi:10.1029/2008jd010597
  • Singh, P. and Kumar, N., 1997. Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. Journal of Hydrology, 193 (1), 316–350. doi:10.1016/S0022-1694(96)03142-3
  • Singh, P., Kumar, N., and Arora, M., 2000. Degree–day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. Journal of Hydrology, 235 (1), 1–11. doi:10.1016/S0022-1694(00)00249-3
  • Slater, A.G., et al., 2013. Uncertainty in seasonal snow reconstruction: relative impacts of model forcing and image availability. Advances in Water Resources, 55, 165–177. doi:10.1016/j.advwatres.2012.07.006
  • Smith, T.J. and Marshall, L.A., 2010. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling & Software, 25 (6), 691–701. doi:10.1016/j.envsoft.2009.11.010
  • Su, F., et al., 2016. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planetary Change, 136, 82–95. doi:10.1016/j.gloplacha.2015.10.012
  • Szczypta, C., et al., 2015. Impact of climate and land cover changes on snow cover in a small Pyrenean catchment. Journal of Hydrology, 521, 84–99. doi:10.1016/j.jhydrol.2014.11.060
  • Takala, M., et al., 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment, 115 (12), 3517–3529. doi:10.1016/j.rse.2011.08.014
  • Tan, X., et al., 2020. Evaluations on gridded precipitation products spanning more than half a century over the Tibetan Plateau and its surroundings. Journal of Hydrology, 582, 124455. doi:10.1016/j.jhydrol.2019.124455
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38 (1), 55–94. doi:10.2307/210739
  • Thornthwaite, C. W. and Mather, J. R., 1955. The water balance. Publications in Climatology. Centerton.
  • Thornthwaite, C. and Mather, J., 1957. Instructions and tables for computing potential evapotranspiration and the water balance, publications in climatology 10/3. Centerton: Drexel Institute of Technology.
  • Tian, P., et al., 2020. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin. CATENA, 187, 104340. doi:10.1016/j.catena.2019.104340
  • Tong, K., et al., 2014. Evaluation ofsatellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519, 423–437. doi:10.1016/j.jhydrol.2014.07.044
  • Wang, S., et al., 2015. Evaluation of remotely sensed precipitation and its performance for streamflow simulations in basins of the Southeast Tibetan Plateau. Journal of Hydrometeorology, 16 (6), 2577–2594. doi:10.1175/JHM-D-14-0166.1
  • Wang, C., et al., 2016. Impacts of Spatiotemporal Anomalies of Tibetan Plateau Snow Cover on Summer Precipitation in Eastern China. Journal of Climate, 30 (3), 885–903. doi:10.1175/JCLI-D-16-0041.1
  • Wang, Z., et al., 2019. Formation of snow cover anomalies over the Tibetan Plateau in Cold Seasons. Journal of Geophysical Research: Atmospheres, 124 (9), 4873–4890. doi:10.1029/2018jd029525
  • Wasko, C. and Sharma, A., 2017. Continuous rainfall generation for a warmer climate using observed temperature sensitivities. Journal of Hydrology, 544, 575–590. doi:10.1016/j.jhydrol.2016.12.002
  • Weiler, M., Seibert, J., and Stahl, K., 2018. Magic components—why quantifying rain, snowmelt, and icemelt in river discharge is not easy. Hydrological Processes, 32 (1), 160–166. doi:10.1002/hyp.11361
  • Winstral, A., Marks, D., and Gurney, R., 2013. Simulating wind-affected snow accumulations at catchment to basin scales. Advances in Water Resources, 55, 64–79. doi:10.1016/j.advwatres.2012.08.011
  • Wu, Y., et al., 2019. Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau. Science of the Total Environment, 660, 1555–1564. doi:10.1016/j.scitotenv.2019.01.119
  • Wu, Y., et al., 2020b. Changing runoff due to temperature and precipitation variations in the dammed Jinsha River. Journal of Hydrology, 582, 124500. doi:10.1016/j.jhydrol.2019.124500
  • Wu, X., Marshall, L., and Sharma, A., 2020a. Quantifying input uncertainty in the calibration of water quality models: reshuffling errors via the secant method. HHydrology and Earth System Sciences Discussions, 2020, 1–26. doi:10.5194/hess-2020-563
  • Wu, X., Marshall, L., and Sharma, A., 2021. Quantifying input error in hydrologic modeling using the Bayesian Error Analysis with Reordering (BEAR) approach. Journal of Hydrology, 598, 126202. doi:10.1016/j.jhydrol.2021.126202
  • Xiao, Z. and Duan, A., 2016. Impacts of Tibetan Plateau Snow Cover on the Interannual Variability of the East Asian Summer Monsoon. Journal of Climate, 29 (23), 8495–8514. doi:10.1175/JCLI-D-16-0029.1
  • Xu, R., et al., 2019. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River. Global and Planetary Change, 175, 144–159. doi:10.1016/j.gloplacha.2019.01.012
  • Xuan, W., et al., 2018. Hydrological simulation and runoff component analysis over a cold mountainous river basin in Southwest China. Water, 10 (11), 1705. doi:10.3390/w10111705
  • Yan, J., et al., 2019. Water resources assessment of china’s transboundary river basins using a machine learning approach. Water Resources Research, 55 (1), 632–655. doi:10.1029/2018WR023044
  • Yang, Y., et al., 2014. Evaluation of gridded precipitation data for driving SWAT model in area upstream of three gorges reservoir. PLOS ONE, 9 (11), e112725. doi:10.1371/journal.pone.0112725
  • Yatagai, A., et al., 2012. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93 (9), 1401–1415. doi:10.1175/bams-d-11-00122.1
  • You, Q., et al., 2020. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Science Reviews, 201, 103043. doi:10.1016/j.earscirev.2019.103043
  • Yuan, L., et al., 2020. Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai–Tibet plateau. Science of the Total Environment, 712, 136392. doi:10.1016/j.scitotenv.2019.136392
  • Zhang, L., et al., 2013. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118 (15), 8500–8518. doi:10.1002/jgrd.50665
  • Zhang, F., et al., 2015. Snow cover and runoff modelling in a high mountain catchment with scarce data: effects of temperature and precipitation parameters. Hydrological Processes, 29 (1), 52–65. doi:10.1002/hyp.10125
  • Zhao, Y., et al., 2019. Calibrating a hydrological model by stratifying frozen ground types and seasons in a Cold Alpine Basin. Water, 11 (5), 985. doi:10.3390/w11050985

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.