1,619
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Understanding flood seasonality and flood regime shift in the Congo River Basin

ORCID Icon, , , , , & show all
Pages 1496-1515 | Received 06 May 2021, Accepted 22 Apr 2022, Published online: 11 Jul 2022

References

  • Addinsoft. 2021. XLSTAT statistical and data analysis solution. New York, USA. Available from: https://www.xlstat.com
  • Alsdorf, D., et al., 2016. Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 54, 378–409. doi:10.1002/2016RG000517
  • Assani, A.A., et al., 2006. Comparison of impacts of dams on the annual maximum flow characteristics in three regulated hydrologic regimes in Quebec (Canada). Hydrological Processes, 20, 3485–3501. doi:10.1002/hyp.6150
  • Axt, I. and Fried, R., 2020. On variance estimation under shifts in the mean. AStA Advances in Statistical Analysis, 104, 417–457. doi:10.1007/s10182-020-00366-5
  • Bačová-Mitková, V. and Onderka, M., 2010. Analysis of extreme hydrological events on THE Danube using the peak over threshold method. Journal of Hydrology and Hydromechanics, 58, 88–101. doi:10.2478/v10098-010-0009-x
  • Bayliss, A.C. and Jones, R.C., 1999. Peaks-over-threshold flood database: summary statistics and seasonality. Report - Institute of Hydrology (United Kingdom).
  • Bernhofen, M.V., et al., 2021. Global flood exposure from different sized rivers. Natural Hazards and Earth System Sciences Discussions, 1–25. doi:10.5194/nhess-2021-102
  • Beyene, T., Ludwig, F., and Franssen, W., 2013. The potential consequences of climate change in the hydrology regime of the Congo River Basin. In: A. Haensler, et al., eds. Climate Change Scenarios for the Congo Basin. Hamburg, Germany: Climate Service Centre Report No. 11. 2192–4058.
  • Bischiniotis, K., et al., 2018. The influence of antecedent conditions on flood risk in Sub-Saharan Africa. Natural Hazards and Earth System Sciences, 18 (1), 271–285. doi:10.5194/nhess-18-271-2018
  • Black, A.R. and Werritty, A., 1997. Seasonality of flooding: a case study of North Britain. Journal of Hydrology, 195 (1), 1–25. doi:10.1016/S0022-1694(96)03264-7
  • Bola, G., et al., 2022. Multireturn periods flood hazards and risks assessment in the Congo River Basin. In: R.M. Tshimanga, G.D. Moukandi N’kaya, and D. Alsdorf, eds., Congo basin hydrology, climate, and biogeochemistry: a foundation for the future, geophysical monograph 269, First Edition, English Version. © 2022 American Geophysical Union. Published 2022 by John Wiley & Sons, Inc. doi:10.1002/9781119657002.ch27
  • Brolsma, J.U., 2010. PIANC, The World Association for Waterborne Transport Infrastructure, an association in a changing world [online]. Boulevard Albert: PIANC. Available from: https://www.pianc.org/about [ Accessed 25th August 2021].
  • Brummett, R. et al., 2009. Water resources, forests and ecosystem goods and services. In: C. de Wasseige, et al., eds. The Forests of the Congo Basin - State of the Forest 2008. Luxembourg: Publications Office of the European Union,141–157.
  • Burn, D.H., 1997. Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology, 202, 212–230. doi:10.1016/S0022-1694(97)00068-1
  • Burn, D.H. and Arnell, N.W., 1993. Synchronicity in global flood responses. Journal of Hydrology, 144, 381–404. doi:10.1016/0022-1694(93)90181-8
  • Chen, L., et al., 2013. A new method for identification of flood seasons using directional statistics. Hydrological Sciences Journal, 58 (1), 28–40. doi:10.1080/02626667.2012.743661
  • Collins, M.J., et al., 2014. Annual floods in New England (USA) and Atlantic Canada: synoptic climatology and generating mechanisms. Physical Geography, 35, 195–219. doi:10.1080/02723646.2014.888510
  • Collins, M.J., 2018. River flood seasonality in the Northeast United States: characterization and trends. Physical Geography, 35, 195–219. doi:10.1080/02723646.2014.888510
  • Collins, M.J., 2019. River flood seasonality in the Northeast United States: characterization and trends. Hydrological Processes, 33, 687–698. doi:10.1002/hyp.13355
  • Creese, A., Washington, R., and Jones, R., 2019. Climate change in the Congo Basin: processes related to wetting in the December–February dry season. Climate Dynamics, 53, 3583–3602. doi:10.1007/s00382-019-04728-x
  • Cunderlik, J. and Burn, D., 2002. The use of flood regime information in regional flood frequency analysis. Hydrological Sciences Journal, 47, 77–92. doi:10.1080/02626660209492909
  • Cunderlik, J.M., Ouarda, T.B.M.J., and Bobée, B., 2004a. Determination of flood seasonality from hydrological records/Détermination de la saisonnalité des crues à partir de séries hydrologiques. Hydrological Sciences Journal, 49, null–526. doi:10.1623/hysj.49.3.511.54351
  • Cunderlik, J.M., Ouarda, T.B.M.J., and Bobée, B., 2004b. On the objective identification of flood seasons. Water Resources Research, 40. doi:10.1029/2003WR002295
  • Dettinger, M.D. and Diaz, H.F., 2000. Global characteristics of stream flow seasonality and variability. Journal of Hydrometeorology, 1, 289–310. 10.1175/1525-7541(2000)001<0289:GCOSFS&#x003E 2.0.CO;2. doi:10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2
  • Engeland, K., et al., 2018. Use of historical data in flood frequency analysis: a case study for four catchments in Norway. Hydrology Research, 49, 466–486. doi:10.2166/nh.2017.069
  • Ficchì, A. and Stephens, L., 2019. Climate variability alters flood timing across Africa. Geophysical Research Letters, 46 (15), 8809–8819. doi:10.1029/2019GL081988.
  • Fisher, N.I., 1993. Statistical analysis of circular data. Cambridge, UK: Cambridge University Press.
  • GRDC, 2020. Operating the global runoff database [online]. Global Runoff Data Centre. Available from: https://www.bafg.de/GRDC/EN/03_dtprdcts/dataproducts_node.html [ Accessed 22th August 2020].
  • Hall, J., et al., 2014. Understanding flood regime changes in Europe: a state of the art assessment. Hydrology and Earth System Sciences, 18, 2735–2772. doi:10.5194/hess-18-2735-2014
  • Hall, J. and Bloschl, G., 2018. Spatial patterns and characteristics of flood seasonality in Europe, hydrol. Hydrology and Earth System Sciences, 22, 3883–3901. doi:10.5194/hess-22-3883-2018
  • Hannaford, J. and Buys, G., 2012. Trends in seasonal river flow regimes in the UK. Journal of Hydrology, 475, 158–174. doi:10.1016/j.jhydrol.2012.09.044
  • Hart, J.A., 2000. Impact and sustainability of indigenous hunting in the Ituri forest, Congo-Zaïre: a comparison of unhunted and hunted duiker populations. In: J.G. Robinson and E.L. Bennet, eds. Hunting for sustainability in tropical forests. New York: Columbia University Press, 106–153.
  • Hawker, A., et al., 2020. Comparing earth observation and inundation models to map frequent to rare flood hazards. ERL-108837, Environmental Research Letters, 15 (12), 124032. doi:10.1088/1748-9326/abc216
  • Hirabayashi, Y., et al., 2013. Global flood risk under climate change. Nature Climate Change, 3, 816–821. doi:10.1038/nclimate1911
  • Hölscher, D., et al., 1997. Evaporation from young secondary vegetation in eastern Amazonia. Journal of Hydrology, 193, 293–305. doi:10.1016/S0022-1694(96)03145-9
  • Impreza-Servisi-Coordinati, 2010. Conseil agricole et rural de gestion (CARG) du Territoire d’Inongo: plan de développement agricole et rural du territoire. Impreza-Servisi-Coordinati, Projet de Développement Agricole du Bandundu [online]. Ministère de l’Agriculture, Pêche et Élevage, République Démocratique du Congo. Financement Union Européenne. Food, 172, 355. Available from: https://docplayer.fr/114436847-Conseil-agricole-et-rural-de-gestion-carg-du-territoire-de-inongo-plan-de-developpement-agricole-et-rural-du-territoire.html
  • Ingram, V., 2009. The hidden costs and values of NTFP exploitation in the Congo Basin [online]. Buenos Aires, Argentina: FAO. Available from: https://www.cifor.org/knowledge/publication/3034, [ Accessed 12th March 2021].
  • Janowiak, J.E., 1988. An investigation of interannual rainfall variability in Africa. Journal of Climate, 1, 240–255. doi:10.1175/1520-0442(1988)001 <0240:AIOIRV>2.0.CO;2
  • Kiem, A.S., Franks, S.W., and Kuczera, G., 2003. Multi-decadal variability of flood risk, 825 Geophys. Geophysical Research Letters, 30, 1035. 2. doi:10.1029/2002GL015992
  • Kundzewicz, Z.W., et al., 2014. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59, 1–28. doi:10.1080/02626667.2013.857411
  • Laraque, A., et al., 1998. Origine des variations de débits du Congo à Brazzaville durant le 20ème siècle. In: E. Servat, et al., eds. Water resources variability in Africa during the 20th century = Variabilité des ressources en eau en Afrique au 20ème siècle, Publication - AISH. Wallingford: AISH, 171–179.
  • Laraque, A., et al., 2001. Spatiotemporal variations in hydrological regimes within Central Africa during the XXth century. Journal of Hydrology, 245, 104–117. doi:10.1016/S0022-1694(01)00340-7
  • Lecce, S.A., 2000. Seasonality of flooding in North Carolina. Southeastern Geographer, 40 (2), 168–175. Available from: http://www.jstor.org/stable/44371080
  • Levene, H.O., 1960. Robust tests for equality of variances. In: Contributions to probability and statistics. Stanford: Stanford University Press 278292, Chapter 25.
  • Liu, P., et al., 2010. Flood season segmentation based on the probability change-point analysis technique. Hydrological Sciences Journal/Journal Des Sciences Hydrologiques, 55, 540–554. doi:10.1080/02626667.2010.481087
  • Magilligan, F.J. and Nislow, K.H., 2005. Changes in hydrologic regimes by dams. Geomorphology, 71, 61–78. doi:10.1016/j.geomorph.2004.08.017
  • Mangini, W., et al., 2018. Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrological Sciences Journal, 63, 493–512. doi:10.1080/02626667.2018.1444766
  • Mardia, K.V., 1975. Statistics of directional data. Journal of the Royal Statistical Society. Series B (Methodological), 37 (3), 349–393 (45). doi:10.1111/j.2517-6161.1975.tb01550.x
  • McHugh, M.J. and Rogers, J.C., 2001. North Atlantic oscillation influence on precipitation variability around the Southeast African Convergence Zone. Journal of Climate, 14, 3631–3642. doi:10.1175/1520-0442(2001)014 <3631:NAOIOP>2.0.CO;2
  • Mertz, B., et al., 2018. Spatial coherence of flood-rich and flood-poor periods across Germany. Journal of Hydrology, 559, 813–826. doi:10.1016/j.jhydrol.2018.02.082
  • Minasny, B. and Hartemink, A.E., 2011. Predicting soil properties in the tropics. Earth-Science Reviews, 106, 52–62. doi:10.1016/j.earscirev.2011.01.005
  • Munzimi, Y.A., et al., 2015. Characterizing Congo Basin rainfall and climate using Tropical Rainfall Measuring Mission (TRMM) satellite data and limited rain gauge ground observations. Journal of Applied Meteorology and Climatology, 54 (3), 541–555. doi:10.1175/JAMC-D-14-0052.1
  • Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of decades to millenia. Global and Planetary Change, 26 (1–3), 137–158. doi:10.1016/S0921-8181(00)00040-0
  • Nicholson, S.E., Funk, C., and Fink, A.H., 2018. Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change, 165, 114–127. doi:10.1016/j.gloplacha.2017.12.014
  • Obasi, G., 2005. The impacts of ENSO in Africa. Climate Change and Africa, 218–230. doi:10.1017/CBO9780511535864.030
  • Olivry, J.C. and Et Boulègue, J., 1995. Grands bassins fluviaux Périatlantiques: Congo, Niger, Amazone: actes du colloque PEGI INSU - CNRS – ORSTOM. du 22 au 24 novembre 1993, 0767-2896. Paris, France: ORSTOM Éditions 1995.
  • Ouarda, T.B.M.J., Ashkar, F., and El‐Jabi, N., 1993. Peaks over threshold model for seasonal flood variations. Engineering Hydrology, 341–346.
  • Ouarda, T.B.M.J., et al., 2000. Regional flood peak and volume estimation in Northern Canadian Basin. Journal of Cold Regions Engineering, 14, 176–191. doi:10.1061/(ASCE)0887-381X(2000)14:4(176)
  • Ouarda, T.B.M.J., et al., 2006. Data-based comparison of seasonality-based regional flood frequency methods. Journal of Hydrology, Hydro-ecological Functioning of the Pang and Lambourn Catchments, UK, 330, 329–339. doi:10.1016/j.jhydrol.2006.03.023
  • Poff, N.L., 2018. Beyond the Natural Flow Regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a nonstationary world. Freshwater Biology, 63, 1011–1021. doi:10.1111/fwb.13038
  • Pokam, W.M. et al., 2014. Identification of processes driving low-level westerlies in west equatorial Africa. Journal of Climate, 27 (11), 4245–4262.
  • Qiang, F., Zhong, T., and Wei Wang, W., 2018. Study on risk assessment and early warning of flood-affected areas when a dam break occurs in a mountain river. Water, 10, 1369. doi:10.3390/w10101369.
  • Reliefweb, Office for the Coordination of Humanitarian Affairs (OCHA), 2019. Washington, DC: United Nations Office for the Coordination of Humanitarian Affairs. Available from: https://reliefweb.int/disaster/fl-2019-000160-cog [Accessed 22 Apr 2020].
  • Rogers, J.C., 1997. North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. Journal of Climate, 10 (7), 1635–1647. doi:10.1175/1520-0442(1997)010<1635:nastva>2.0.co;2
  • Runge, J. and Nguimalet, C.-R., 2005. Physiogeographic features of the Oubangui catchment and environmental trends reflected in discharge and floods at Bangui 1911–1999, Central African Republic. Geomorphology, Tropical Rivers, 70, 311–324. doi:10.1016/j.geomorph.2005.02.010
  • Schmocker-Fackel, P. and Naef, F., 2010. Changes in flood frequencies in Switzerland since 1500. Hydrology and Earth System Sciences, 14 (8), 1581–1594. doi:10.5194/hess-14-1581-2010
  • SO-HYBAM, 2020. Amazon basin water resources observation services. Available from: https://hybam.obs-mip.fr [ Accessed 22th August 2020].
  • Solari, S., et al., 2017. Peaks over threshold (POT): a methodology for automatic threshold estimation using goodness of fit p-value. Water Resources Research, 53, 2833–2849. doi:10.1002/2016WR019426
  • Stat. Soft. Inc, 2004. STATISTICA (data analysis software system), Version 7. Available from: www.statsoft.com
  • Steirou, E.-S., et al., 2017. Links between large-scale circulation 899 patterns and streamflow in Central Europe: a review. Journal of Hydrology, 549, 484–900 500— . doi:10.1016/j.jhydrol.2017.04.003
  • Svensson, C., Kundzewicz, W.Z., and Maurer, T., 2005. Trend detection in river flow series: 2. Flood and low-flow index series/Détection de tendance dans des séries de débit fluvial: 2. Séries d’indices de crue et d’étiage. Hydrological Sciences Journal, 50, null–824. doi:10.1623/hysj.2005.50.5.811
  • Svensson, C., et al., 2006. Trends in river floods: why is there no clear signal in observations? In: Frontiers in flood research, 8th Kovacs Colloquium, UNESCO, Paris, 30 June–1 July 2006. IAHS, 1–18.
  • Talbot, C.J., et al., 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry, 141, 439–461. doi:10.1007/s10533-018-0449-7
  • Talling, P.J., et al., 2022. Flood and tides trigger longest measured sediment flow that accelerates for thousand kilometers into deep-sea. Nature Communications (under review).
  • Teugels, G.G. and Thieme, M.L., 2005. Freshwater fish biodiversity in the Congo Basin. In: M.L. Thieme, et al., eds. Freshwater ecoregions of Africa and Madagascar: a conservation assessment. Washington, DC: Island Press, 51–53.
  • Todd, M. and Washington, R., 2004. Climate variability in central equatorial Africa: influence from the Atlantic sector. Geophysical Research Letters, 31 (23), L23202. 00948276 31. doi:10.1029/2004GL020975
  • Tramblay, Y., et al., 2021. On the influence of extreme rainfall and antecedent soil moisture on flood hazards in Africa. EGU General Assembly, EGU21–2908. Online. doi:10.5194/egusphere-egu21-2908 [19–30 Apr 2021].
  • Trigg, M.A., et al., 2022. Putting river users at the heart of hydraulics and morphology research in the Congo Basin. In: R.M. Tshimanga, G.D. Moukandi N’kaya, and D. Alsdorf, eds. Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future, Geophysical Monograph 269, first edition, English version. © 2022 American Geophysical Union. Published 2022 by John. Wiley & Sons, Inc. doi:10.1002/9781119657002.ch28
  • Tshimanga, R.M. and Hughes, D.A., 2012. Climate change and impacts on the hydrology of the Congo Basin: the case of the northern sub-basins of the Oubangui and Sangha Rivers. Physics and Chemistry of the Earth, Parts A/B/C, 50–52, 72–83. doi:10.1016/j.pce.2012.08.002
  • Tshimanga, R. and Hughes, D., 2014. Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and water resources assessment of large rivers: the Congo River. Water Resources Research, 50, 1174–1188. doi:10.1002/2013WR014310
  • Tshimanga, R.M., et al., 2016. A regional perceptive of flood forecasting and disaster management systems for the Congo River Basin. In: T.E. Adams and T.C. Pagano, eds. Flood forecasting. Academic Press, Chapter 4, 87–124. doi:10.1016/B978-0-12-801884-2.00004-9
  • Tshimanga, R.M., et al., 2022. Towards a framework of catchment classification for hydrologic predictions and water resources management in the ungauged basin of the Congo River: an a priori approach. In: R.M. Tshimanga, G.D. Moukandi N’kaya, and D. Alsdorf, eds. Congo basin hydrology, climate, and biogeochemistry: a foundation for the future, geophysical monograph 269, first edition, english version. © 2022 American Geophysical Union. Published 2022 by John. Wiley & Sons, Inc. doi:10.1002/9781119657002.ch24
  • Warner, J., et al., 2019. The fantasy of the grand inga hydroelectric project on the river Congo. Water, 11 (3), 407. doi:10.3390/w11030407
  • Washington, R., et al., 2013. Congo Basin rainfall climatology: can we believe the climate models? Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120296. doi:10.1098/rstb.2012.0296
  • Wesselink, A.J., et al., 1996. Les régimes hydroclimatiques et hydrologiques d’un bassin versant de type tropical humide : l’Oubangui (République Centrafricaine). In: P. Chevallier and B. Pouyaud eds. L'hydrologie tropicale : géosciences et outil pour le développement : mélanges à la mémoire de Jean Rodier. Wallingford: AISH, 179–194. (Publication - AISH ; 238). Journées Hydrologiques de l'ORSTOM : Conférence de Paris, 11., Paris (FRA), 1995/05/02-04.
  • Wilkinson, L. and Friendly, M., 2009. The history of the cluster heat map. The American Statistician, 63 (2), 179–184. doi:10.1198/tas.2009.0033
  • Wohl, E., et al., 2012. The hydrology of the humid tropics. Nature Climate Change, 2 (9), 655–662. doi:10.1038/nclimate1556
  • Wold, H., 1975. Path models with latent variables: the NIPALS Approach. **NIPALS = Nonlinear Iterative PArtial Least Squares. In: H.M. Blalock, et al., eds. International perspectives on mathematical and statistical modeling,quantitative sociology. Academic Press, 307–357. doi:10.1016/B978-0-12-103950-9.50017-4
  • Ye, S., et al., 2017. Understanding flood seasonality and its temporal shifts within the contiguous United States. Journal of Hydrometeorology, 18 (7), 1997–2009. doi:10.1175/JHM-D-16-0207.1
  • Yujian, L. and Liye, X., 2010. Unweighted multiple group method with arithmetic mean. In: 2010 IEEE fifth international conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). Presented at the 2010 IEEE fifth international conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 830–834. doi:10.1109/BICTA.2010.5645232