1,550
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Assessment of spatial and temporal distribution of surface water balance in a data-scarce African transboundary river basin

, , & ORCID Icon
Pages 1561-1581 | Received 05 Jan 2022, Accepted 10 May 2022, Published online: 27 Jul 2022

References

  • Abdollahi, K., et al., 2017. A distributed monthly water balance model: formulation and application on Black Volta Basin. Environmental Earth Sciences, 76 (5), 1–18. doi:10.1007/s12665-017-6512-1
  • Abebe, N.A., Ogden, F.L., and Pradhan, N.R., 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: implications for parameter estimation. Journal of Hydrology, 389 (3–4), 301–310. doi:10.1016/j.jhydrol.2010.06.007
  • Adler, R.F., et al., 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4 (6), 1147–1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  • Allen, R.G., et al., 1998. Crop evapotraspiration guidelines for computing crop water requirements, FAO Irrigation & drainage Paper 56. Roma: FAO, Food and Agriculture Organization of the United Nations.
  • Aneseyee, A.B., Soromessa, T., and Elias, E., 2020. The effect of land use/land cover changes on ecosystem services valuation of Winike watershed, Omo Gibe basin, Ethiopia. Human and Ecological Risk Assessment, 26 (10), 2608–2627. doi:10.1080/10807039.2019.1675139
  • Armbruster, V. and Leibundgut, C., 2001. Determination of spatially and temporally highly detailed groundwater recharge in porous aquifers by a SVAT model. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26 (7–8), 607–611. doi:10.1016/S1464-1909(01)00056-9
  • Arnold, J.G., et al., 2012. SWAT: model use, calibration, and validation. Transactions of the ASABE, 55 (4), 1491–1508. doi:10.13031/2013.42256
  • Ashaolu, E.D., et al., 2020. Spatial and temporal recharge estimation of the basement complex in Nigeria, West Africa. Journal of Hydrology: Regional Studies, 27 (December 2019), 100658. doi:10.1016/j.ejrh.2019.100658
  • Ayenew, T. and Becht, R., 2008. Comparative assessment of the water balance and hydrology of selected Ethiopian and Kenyan Rift Lakes. Lakes and Reservoirs: Research and Management, 13 (3), 181–196. doi:10.1111/j.1440-1770.2008.00368.x
  • Babama’aji, R.A., 2013. Impacts of precipitation, land use land cover and soil type on the water balance of Lake Chad Basin. University of Missouri-Kansas City, ProQuest LLC, 84 (December), 1–211. http://ir.obihiro.ac.jp/dspace/handle/10322/3933
  • Batelaan, O. and De Smedt, F., 2001. WetSpass: a flexible, GIS based, distributed recharge methodology for regional groundwater modelling. IAHS-AISH Publication, 269, 11–18.
  • Batelaan, O. and De Smedt, F., 2007. GIS-based recharge estimation by coupling surface-subsurface water balances. Journal of Hydrology, 337 (3–4), 337–355. doi:10.1016/j.jhydrol.2007.02.001
  • Bathurst, J.C., 1986. Physically-based distributed modelling of an upland catchment using the systeme hydrologique Europeen. Journal of Hydrology, 87 (1–2), 79–102. doi:10.1016/0022-1694(86)90116-2
  • Beguería, S. and Vicente-Serrano, S.M., 2017. Package “SPEI”. R-Package. (March), 16. doi:10.1175/2009JCLI2909.1
  • Bergström, S., 1992. The HBV model - its structure and applications. Swedish Meteorological and Hydrological Institute, Norrköping, 4 (4), 1–33.
  • Beven, K., 1989. Changing ideas in hydrology- the case of physically-based models. Materials Chemistry and Physics, 1 (4), 157–172. https://doi.org/10.1016/S0254-0584(01)00561-2
  • Byeon, S.J., 2015. Water balance assessment for stable water management Seong Joon Byeon to cite this version: HAL Id: tel-01131202 Docteur en sciences water balance assessment for stable water management.
  • Chaemiso, S.E., Abebe, A., and Pingale, S.M., 2016. Assessment of the impact of climate change on surface hydrological processes using SWAT: a case study of Omo-Gibe river basin, Ethiopia. Modeling Earth Systems and Environment, 2 (4), 1–15. doi:10.1007/s40808-016-0257-9
  • Chaemiso, S.E., Kartha, S.A., and Pingale, S.M., 2021. Effect of land use/land cover changes on surface water availability in the Omo-Gibe Basin, Ethiopia. Hydrological Sciences Journal, doi:10.1080/02626667.2021.1963442
  • Combalicer, E.A., et al., 2008. Modeling water balance for the small-forested watershed in Korea. KSCE Journal of Civil Engineering, 12 (5), 339–348. doi:10.1007/s12205-008-0339-y
  • de Jong, S.M. and Jetten, V.G., 2007. Estimating spatial patterns of rainfall interception from remotely sensed vegetation indices and spectral mixture analysis. International Journal of Geographical Information Science, 21 (5), 529–545. doi:10.1080/13658810601064884
  • Degefu, M.A. and Bewket, W., 2014. Variability and trends in rainfall amount and extreme event indices in the Omo-Ghibe River Basin, Ethiopia. Regional Environmental Change, 14 (2), 799–810. doi:10.1007/s10113-013-0538-z
  • FAO, 2009. Harmonized world soil database version 1.1. Food and. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 43. http://www.fao.org/fileadmin/templates/nr/documents/HWSD/HWSD_Documentation.pdf
  • Fao/Iiasa/Isric/Isscas/Jrc, 2012. Harmonized world soil databased version 1.2, FAO, Rome, Italy and IIASA, Austria: Laxenburg. Available from: https://files.isric.org/public/other/HWSD_v1.21.zip
  • Gao, G., et al., 2016. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 557–558, 331–342. doi:10.1016/j.scitotenv.2016.03.019
  • Gebremeskel, G. and Kebede, A., 2017. Spatial estimation of long-term seasonal and annual groundwater resources: application of WetSpass model in the Werii watershed of the Tekeze River Basin, Ethiopia. Physical Geography, 38 (4), 338–359. doi:10.1080/02723646.2017.1302791
  • Gebreyohannes, T., et al., 2013. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. Journal of Hydrology, 499, 110–123. doi:10.1016/j.jhydrol.2013.06.026
  • Gebru, T.A. and Tesfahunegn, G.B., 2019. Chloride mass balance for estimation of groundwater recharge in a semi-arid catchment of northern Ethiopia. Hydrogeology Journal, 27 (1), 363–378. doi:10.1007/s10040-018-1845-8
  • Gebru, T.A. and Tesfahunegn, G.B., 2020. GIS based water balance components estimation in northern Ethiopia catchment. Soil and Tillage Research, 197 (October 2019), 104514. doi:10.1016/j.still.2019.104514
  • Gelebo, A.H., Kasiviswanathan, K.S., and Khare, D., 2022. Assessment of the spatial – temporal distribution of groundwater recharge in data ‑ scarce large ‑ scale African river basin. Environmental Monitoring and Assessment, 1–17. doi:10.1007/s10661-022-09778-z
  • Gerten, D., et al., 2004. Terrestrial vegetation and water balance - Hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286 (1–4), 249–270. doi:10.1016/j.jhydrol.2003.09.029
  • Grimaldi, S., et al., 2021. Continuous hydrologic modelling for design simulation in small and ungauged basins: a step forward and some tests for its practical use. Journal of Hydrology, 595 (October 2020), 125664. doi:10.1016/j.jhydrol.2020.125664
  • Guo, D., Westra, S., and Maier, H.R., 2017. Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones. Hydrology and Earth System Sciences, 21 (4), 2107–2126. doi:10.5194/hess-21-2107-2017
  • Hamel, P. and Guswa, A.J., 2015. Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina. Hydrology and Earth System Sciences, 19 (2), 839–853. doi:10.5194/hess-19-839-2015
  • He, B., Takase, K., and Wang, Y., 2008. A semi-distributed groundwater recharge model for estimating water-table and water-balance variables. Hydrogeology Journal, 16 (6), 1215–1228. doi:10.1007/s10040-008-0298-x
  • Jakeman, A.J. and Letcher, R.A., 2003. Integrated assessment and modelling: features, principles and examples for catchment management. Environmental Modelling and Software, 18 (6), 491–501. doi:10.1016/S1364-8152(03)00024-0
  • Jillo, A.Y., et al., 2017. Characterization of regional variability of seasonal water balance within Omo-Ghibe River Basin, Ethiopia. Hydrological Sciences Journal, 62 (8), 1200–1215. doi:10.1080/02626667.2017.1313419
  • Kahsay, G.H., et al., 2019. Spatial groundwater recharge estimation in Raya basin, Northern Ethiopia: an approach using GIS based water balance model. Sustainable Water Resources Management, 5 (2), 961–975. doi:10.1007/s40899-018-0272-2
  • Kasiviswanathan, K.S. and Sudheer, K.P., 2013. Quantification of the predictive uncertainty of artificial neural network based river flow forecast models. Stochastic Environmental Research and Risk Assessment, 27 (1), 137–146. doi:10.1007/s00477-012-0600-2
  • Kasiviswanathan, K.S., et al., 2016. Potential application of wavelet neural network ensemble to forecast streamflow for flood management. Journal of Hydrology, 536, 161–173. doi:10.1016/j.jhydrol.2016.02.044
  • Kendy, E., 2003. The false promise of sustainable pumping rates. Ground Water, 41 (1), 2–4. doi:10.1111/j.1745-6584.2003.tb02559.x
  • Kumar, et al., 2016. SWAT-Based streamflow estimation and its responses to climate change in the Kadongjia river Watershed, Southern Tibet. Journal of Hydrometeorology, 14 (5), 3127–3142. doi:10.1175/JHM-D-12-0159.1
  • Lane, R.A., et al., 2021. Incorporating uncertainty into multiscale parameter regionalization to evaluate the performance of nationally consistent parameter fields for a hydrological model. Water Resources Research, 57 (10), 1–19. doi:10.1029/2020wr028393
  • Leenaars, J., et al., 2014. Africa soil profiles database. GlobalSoilMap, 51–57. doi:10.1201/b16500-13
  • Loucks, D.P. and Van Beek, E., 2017. Water resource systems planning and management: an introduction to methods, models, and applications. Advances in Water Resources. doi:10.1016/0309-1708(81)90046-4
  • Maeda, E.E., Wiberg, D.A., and Pellikka, P.K.E., 2011. Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Applied Geography, 31 (1), 251–258. doi:10.1016/j.apgeog.2010.05.011
  • Maier, H.R., et al., 2010. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and Software, 25 (8), 891–909. doi:10.1016/j.envsoft.2010.02.003
  • Manfreda, S., et al., 2005. DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation To cite this version: HAL Id: hal-00297377 advances in geosciences DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil mo.
  • Martz, L.W. and Garbrecht, J., 1992. Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers and Geosciences, 18 (6), 747–761. doi:10.1016/0098-3004(92)90007-E
  • McClain, M.E., 2013. Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications. Ambio, 42 (5), 549–565. doi:10.1007/s13280-012-0359-1
  • Melki, A., et al., 2017. Groundwater recharge estimation under semi arid climate: case of Northern Gafsa watershed, Tunisia. Journal of African Earth Sciences, 132, 37–46. doi:10.1016/j.jafrearsci.2017.04.020
  • Meresa, E. and Taye, G., 2019. Estimation of groundwater recharge using GIS-based WetSpass model for Birki watershed, the eastern zone of Tigray, Northern Ethiopia. Sustainable Water Resources Management, 5 (4), 1555–1566. doi:10.1007/s40899-018-0282-0
  • Molla, D.D., Tegaye, T.A., and Fletcher, C.G., 2019. Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model. Journal of Hydrology: Regional Studies, 24 (July), 100615. doi:10.1016/j.ejrh.2019.100615
  • Mooney, H., Cropper, A., and Reid, W., 2005. Confronting the human dilemma: how can ecosystems provide sustainable services to benefit society? Nature, 434 (7033), 561–562. doi:10.1038/434561a
  • Moreira, A.A., et al., 2019. Assessment of terrestrial water balance using remote sensing data in South America. Journal of Hydrology, 575 (December 2018), 131–147. doi:10.1016/j.jhydrol.2019.05.021
  • Morgan, R.P.C., Morgan, D.D.V., and Finney, H.J., 1984. A predictive model for the assessment of soil erosion risk. Journal of Agricultural Engineering Research, 30 (C), 245–253. doi:10.1016/S0021-8634(84)80025-6
  • Mustafa, S.M.T., et al., 2017. Identification des facteurs influençant la sécheresse et le rabattement des eaux souterraines au nord-ouest du Bangladesh. Hydrogeology Journal, 25 (5), 1357–1375. doi:10.1007/s10040-017-1547-7
  • Nannawo, A.S., Lohani, T.K., and Eshete, A.A., 2021. Exemplifying the effects using WetSpass model depicting the landscape modifications on long-term surface and subsurface hydrological water balance in Bilate Basin, Ethiopia. Advances in Civil Engineering, 2021, 1–20. doi:10.1155/2021/7283002
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part1-A discussion of principles. Journal of Hydrology, 10 (2), 282–290. doi:10.1080/00750770109555783
  • Nedaw, D., 2010. Water balance and groundwater quality of Koraro area, Tigray, Northern Ethiopia. Momona Ethiopian Journal of Science, 2 (2). doi:10.4314/mejs.v2i2.57678
  • Nesru, M., Nagaraj, M.K., and Shetty, A., 2020a. Assessment of consumption and availability of water in the upper Omo-Gibe basin, Ethiopia. Arabian Journal of Geosciences, 13 (1). doi:10.1007/s12517-019-4897-8
  • Nesru, M., Shetty, A., and Nagaraj, M.K., 2020b. Multi-variable calibration of hydrological model in the upper Omo-Gibe basin, Ethiopia. Acta Geophysica, 68 (2), 537–551. doi:10.1007/s11600-020-00417-0
  • Nistor, M.M., et al., 2020. Investigation of groundwater table distribution using borehole piezometer data interpolation: case study of Singapore. Engineering Geology, 271 (August 2019), 105590. doi:10.1016/j.enggeo.2020.105590
  • Padrón, R.S., et al., 2017. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis. Water Resources Research, 53 (11), 9659–9678. doi:10.1002/2017WR021215
  • Pagliero, L., et al., 2019. Investigating regionalization techniques for large-scale hydrological modelling. Journal of Hydrology, 570 (September 2017), 220–235. doi:10.1016/j.jhydrol.2018.12.071
  • Pan, Y., et al., 2011. Impact of land use change on groundwater recharge in Guishui River Basin, China. Chinese Geographical Science, 21 (6), 734–743. doi:10.1007/s11769-011-0508-7
  • Petroselli, A., Vojtek, M., and Vojteková, J., 2019. Flood mapping in small ungauged basins: a comparison of different approaches for two case studies in Slovakia. Hydrology Research, 50 (1), 379–392. doi:10.2166/nh.2018.040
  • Piniewski, M., et al., 2017. Hydrological modelling of the Vistula and Odra river basins using SWAT. Hydrological Sciences Journal, 62 (8), 1266–1289. doi:10.1080/02626667.2017.1321842
  • Pistocchi, A., Bouraoui, F., and Bittelli, M., 2008. A simplified parameterization of the monthly topsoil water budget. Water Resources Research, 44 (12). doi:10.1029/2007WR006603
  • Rachid, G., Alameddine, I., and El-Fadel, M., 2021. Management of saltwater intrusion in data-scarce coastal aquifers: impacts of seasonality, water deficit, and land use. Water Resources Management, 35 (15), 5139–5153. doi:10.1007/s11269-021-02991-4
  • Rijsberman, F.R., 2006. Water scarcity: fact or fiction? Agricultural Water Management, 80 (1–3), 5–22. doi:10.1016/j.agwat.2005.07.001
  • Roberts, J., 1983. Forest transpiration: a conservative hydrological process? Journal of Hydrology, 66 (1–4), 133–141. doi:10.1016/0022-1694(83)90181-6
  • Roderick, M.L. and Farquhar, G.D., 2011. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resources Research, 47 (6), 1–11. doi:10.1029/2010WR009826
  • Rui, S., et al., 2013. SWAT-Based streamflow estimation and its responses to climate change in the Kadongjia river Watershed, Southern Tibet. Journal of Hydrometeorology, 14 (5), 1571–1586. doi:10.1175/JHM-D-12-0159.1
  • Rwanga, S.S. 2013. A review on groundwater recharge estimation using WetSpass model. In: International Conference on Civil and Environmental Engineering (CEE'2013), Johannesburg (South Africa), 156–160.
  • Savenije, H.H.G., 1997. Determination of evaporation from a catchment water balance at a monthly time scale. Hydrology and Earth System Sciences, 1 (1), 93–99. doi:10.5194/hess-1-93-1997
  • Seyler, F., et al., 2009. Watershed delineation for the Amazon sub-basin systemusing GTOPO30 DEM and a drainage networkextracted from JERS SAR images. Hydrological Processes, 2274 (October 2008), 3173–3185. doi:10.1002/hyp
  • Sutanto, S.J., et al., 2012. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16 (8), 2605–2616. doi:10.5194/hess-16-2605-2012
  • Teklebirhan, A., Dessie, N., and Tesfamichael, G., 2012. Groundwater recharge, evapotranspiration and surface runoff estimation using WetSpass modeling method in Illala Catchment, Northern Ethiopia. Momona Ethiopian Journal of Science, 4 (2), 96. doi:10.4314/mejs.v4i2.80119
  • Terskii, P., et al., 2019. Assessment of water balance for Russian subcatchment of Western Dvina River using SWAT model. Frontiers in Earth Science, 7 (September), 1–15. doi:10.3389/feart.2019.00241
  • Tshimanga, R.M. and Hughes, D.A., 2014. Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and water resources assessment of large rivers: the Congo River. Journal of the American Water Resources Association, 5 (3), 2. doi:10.1111/j.1752-1688.1969.tb04897.x
  • Turc, L., 1955. ‘Le bilan d’eau des sols: relations entre les précipitations, l’évaporation et l’écoulement’. Journées de l’hydraulique, 3 (1), 36–44.
  • Turner, B.L., Lambin, E.F., and Reenberg, A., 2007. The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104 (52), 20666–20671. doi:10.1073/pnas.0704119104
  • Vojtek, M., et al., 2019. Flood inundation mapping in small and ungauged basins: sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach. Hydrology Research, 50 (4), 1002–1019. doi:10.2166/nh.2019.163
  • Wang, Y., et al., 2012. Monthly spatial distributed water resources assessment: a case study. Computers and Geosciences, 45, 319–330. doi:10.1016/j.cageo.2011.11.028
  • Williams, C.A., et al., 2012. Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resources Research, 48 (6), 1–13. doi:10.1029/2011WR011586
  • Yenehun, A., et al., 2020. Groundwater recharge and water table response to changing conditions for aquifers at different physiography: the case of a semi-humid river catchment, northwestern highlands of Ethiopia. Science of the Total Environment, 748, 142243. doi:10.1016/j.scitotenv.2020.142243
  • Zdon, A., et al., 2019. Identification of source water mixing in the fish slough spring complex, Mono County, California, USA. Hydrology, 6 (1), 1–11. doi:10.3390/hydrology6010023
  • Zhang, Z., et al., 2008. Evaluation of the MIKE SHE model for application in the Loess Plateau, China. Journal of the American Water Resources Association, 44 (5), 1108–1120. doi:10.1111/j.1752-1688.2008.00244.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.