144
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Estimation of climatic and anthropogenic contributions to streamflow change in southern Romania

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1598-1608 | Received 19 Jun 2021, Accepted 09 Jun 2022, Published online: 27 Jul 2022

References

  • Arora, V.K., 2002. The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology, 265 (1–4), 164–177. doi:10.1016/S0022-1694(02)00101-4
  • Beck, H.E., et al., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5 (1), 1–12. doi:10.1038/sdata.2018.214.
  • Berghuijs, W.R., et al., 2017. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resources Research, 53 (10), 8475–8486. doi:10.1002/2017WR021593
  • Birsan, M.V., et al., 2014. Seasonal trends in Romanian streamflow. Hydrological Processes, 28 (15), 4496–4505. doi:10.1002/hyp.9961
  • Birsan, M.V. and Dumitrescu, A., 2014a. ROCADA: Romanian daily gridded climatic dataset (1961–2013) V1.0. Bucharest, Romania: Administratia Nationala de Meteorologie. doi:10.1594/PANGAEA.833627
  • Birsan, M.V. and Dumitrescu, A., 2014b. Snow variability in Romania in connection to large-scale atmospheric circulation. International Journal of Climatology, 34 (1), 134–144. doi:10.1002/joc.3671
  • Birsan, M.V., 2015. Trends in monthly natural streamflow in Romania and linkages to atmospheric circulation in the North Atlantic. Water Resources Management, 29 (9), 3305–3313. doi:10.1007/s11269-015-0999-6
  • Bojariu, R., et al., 2015. Schimbările climatice – de la bazele fizice la riscuri și adaptare. Bucharest: Printech.
  • Bojariu, R., et al., 2021. Schimbările climatice – de la bazele fizice la riscuri și adaptare. Ediție revăzută și adăugită. București: Printech.
  • Borcan, M., Neculau, G., and Retegan, M., 17–26 June 2014. The influence determined by the changing of mark climatic parameters upon the hydrological regime in southern Romania. In: Proceedings of the 14th GeoConference on water resources. Forest, marine and ocean ecosystems. Albena, Bulgaria, 759–766. doi:10.5593/SGEM2014/B31/S12.097
  • Budyko, M.I., 1961. The heat balance of the Earth’s surface. Soviet Geography, 2 (4), 3–13. doi:10.1080/00385417.1961.10770761
  • Budyko, M.I., 1974. Climate and life. New York: Academic Press.
  • Carbonnel, J.P., Petrorian, R., and Serban, P., 1997. Evolution récente du régime hydrologique de quelques rivières de Roumanie Centrale (Courte note). Revue des sciences de l’eau / Journal of Water Science, 10 (4), 545–552. doi:10.7202/705293ar
  • Claverie, M., et al., 2016. A 30+ year AVHRR LAI and FAPAR climate data record: algorithm description and validation. Remote Sensing, 8 (3), 263. doi:10.3390/rs8030263
  • Constantinescu, Ş., et al., 2015. Embanking the Lower Danube: from natural to engineered floodplains and back. In: P. Hudson and H. Middelkoop, eds. Geomorphic approaches to integrated floodplain management of lowland fluvial systems in North America and Europe. New York: Springer, 265–288 doi:10.1007/978-1-4939-2380-9_11
  • Croitoru, A.E., et al., 2013. Recent changes in reference evapotranspiration in Romania. Global and Planetary Change, 111, 127–136. doi:10.1016/j.gloplacha.2013.09.004
  • Croitoru, A.E., et al., 2016. Changes in heat waves indices in Romania over the period 1961–2015. Global and Planetary Change, 146, 109–121. doi:10.1016/j.gloplacha.2016.08.016
  • Destouni, G., Fernando, J., and Carmen, P., 2013. Hydroclimatic shifts driven by human water use for food and energy production. Nature Climate Change, 3 (3), 213–217. doi:10.1038/nclimate1719
  • DeWalle, D.R., et al., 2000. Potential effects of climate change and urbanization on mean annual streamflow in the United States. Water Resources Research, 36 (9), 2655–2664. doi:10.1029/2000WR900134
  • Dey, P. and Mishra, A., 2017. Separating the impacts of climate change and human activities on streamflow: a review of methodologies and critical assumptions. Journal of Hydrology, 548, 278–290. doi:10.1016/j.jhydrol.2017.03.014
  • Doniţă, N., Biriş, I.A., and Filat, M., 2008. Ghid de bune practici pentru managementul pădurilor din Lunca Dunării. Bucharest: Editura Silvică.
  • Donohue, R.J., Roderick, M.L., and McVicar, T.R., 2007. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrology and Earth System Sciences, 11 (2), 983–995. doi:10.5194/hess-11-983-2007
  • Dumitrescu, A., et al., 2015. Recent climatic changes in Romania from observational data (1961–2013). Theoretical and Applied Climatology, 122 (1–2), 111–119. doi:10.1007/s00704-014-1290-0
  • Dumitrescu, A. and Birsan, M.V., 2015. ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Natural Hazards, 78 (2), 1045–1063. doi:10.1007/s11069-015-1757-z
  • Fu, B.P., 1981. On the calculation of the evaporation from land surface. Scientia Atmospherica Sinica, 5 (1), 23–31.
  • Fuchs, R., et al., 2013. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences, 10 (3), 1543–1559. doi:10.5194/bg-10-1543-2013
  • Gao, G., et al., 2016. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 557–558, 331–342. doi:10.1016/j.scitotenv.2016.03.019
  • Gâștescu, P., et al., 1983. Apele. In: L. Badea, P. Gâștescu, and V. Velcea, eds. Geografia României. Vol I., Geografia fizică. București: Editura Academiei RSR, 293–387.
  • Griffiths, P., et al., 2013. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environmental Research Letters, 8 (4), 045024. doi:10.1088/1748-9326/8/4/045024
  • Hamed, K.H. and Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204 (1–4), 182–196. doi:10.1016/S0022-1694(97)
  • Harris, I., et al., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7 (1), 1–18. doi:10.6084/m9.figshare.11980500
  • Huntington, T.G., 2006. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319 (1–4), 83–95. doi:10.1016/j.jhydrol.2005.07.003
  • Ionita, M., et al., 2014. Spatial and temporal variability of Winter streamflow over Romania and its relationship to large-scale atmospheric circulation. Journal of Hydrology, 519, 1339–1349. doi:10.1016/j.jhydrol.2014.09.024
  • Jaramillo, F. and Destouni, G., 2015. Local flow regulation and irrigation raise global human water consumption and footprint. Science, 350 (6265), 1248–1251. doi:10.1126/science.aad1010
  • Jiang, C., et al., 2017. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Global Change Biology, 23 (10), 4133–4146. doi:10.1111/gcb.13787
  • Kendall, M.G., 1975. Rank correlation methods. London: Griffin.
  • Kuemmerle, T., et al., 2008. Land use change in Southern Romania after the collapse of socialism. Regional Environmental Change, 9 (1), 1–12. doi:10.1007/s10113-008-0050-z
  • Liang, W., et al., 2015. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resources Research, 51 (8), 6500–6519. doi:10.1002/2014WR016589
  • Lup, A., Miron, L., and Alim, I.D., 2017. Irrigation investments in Romania. Size, results, efficiency (1965–1989). Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Horticulture, 74 (1), 93–100. doi:10.15835/buasvmcn-hort:
  • Malagò, A., Bouraoui, F., and De Roo, A., 2018. Diagnosis and treatment of the SWAT hydrological response using the Budyko framework. Sustainability, 10 (5), 1373. doi:10.3390/su10051373
  • Mann, H.B., 1945. Non-parametric test against trend. Econometrica, 13 (3), 245–259. doi:10.2307/1907187
  • Mares, C., et al., 2016. Discharge variability in Romania using palmer indices and a simple atmospheric index of large-scale circulation. Hydrological Sciences Journal, 61 (6), 1010–1025. doi:10.1080/02626667.2015.1006233
  • Marin, L., et al., 2014. An overview of annual climatic changes in Romania: trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity and wind speed during the 1961–2013 period. Carpathian Journal of Earth and Environmental Sciences, 9 (4), 253–258.
  • Mianabadi, A., et al., 2020. Budyko framework; towards non-steady state conditions. Journal of Hydrology, 588, 125089. doi:10.1016/j.jhydrol.2020.125089
  • Micu, D., et al., 2017. Heat stress-crop yields interactions under summer warming trends: insights for the southern cropping lowlands of Romania. Revue Roumaine de Géographie/Romanian Journal of Geography, 61 (2), 169–192.
  • Mitof, I. and Prǎvǎlie, R., 2014. Temporal trends of hydroclimatic variability in the Lower Buzǎu catchment. Geographia Technica, 9 (1), 87–100.
  • NARW (National Administration Romanian Waters), 2015a. Flood risk management plan for Argeș – Vedea water district.
  • NARW (National Administration Romanian Waters), 2015b. Flood risk management plan for Buzău – Ialomița water district.
  • NARW (National Administration Romanian Waters), 2015c. River basin management plan for Argeş – Vedea water district.
  • NARW (National Administration Romanian Waters), 2015d. River basin management plan for Buzău – Ialomița water district.
  • Olofsson, P., et al., 2011. Carbon implications of forest restitution in post-socialist Romania. Environmental Research Letters, 6 (4), 045202. doi:10.1088/1748-9326/6/4/045202
  • Padron, R.S., et al., 2017. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis. Water Resources Research, 53 (11), 9659–9678. doi:10.1002/2017WR021215
  • Pătru, I., Zaharia, L., and Oprea, R., 2006. Geografia fizică a Românei: climă, ape, vegetație, soluri. București: Editura Universitară.
  • Pettitt, A.N., 1979. A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28 (2), 126–135. doi:10.2307/2346729
  • Popovici, E.A., Bălteanu, D., and Kucsicsa, G., 2016. Utilizarea terenurilor și dezvoltarea actuală a agriculturii. In: D. Bălteanu, M. Dumitraşcu, S. Geacu, B. Mitrică, and M. Sima, eds. România. Natură şi societate. Bucharest: Editura Academiei Române, 329–374.
  • Prăvălie, R., et al., 2016. Hydroclimatic dynamics in southwestern Romania drylands over the past 50 years. Journal of Earth System Science, 125 (6), 1255–1271. doi:10.1007/s12040-016-0730-x
  • Prăvălie, R., et al., 2019. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. Catena, 172, 295–312. doi:10.1016/j.catena.2018.08.028
  • Retegan, M. and Borcan, M., 2011. Estimating the tendency and the variability of the rainfall amount in Ialomița river basin and their influence upon the liquid run-off. In: Aerul si Apa. Componente ale Mediului, 18-19 March 2011 Cluj-Napoca, 178–184.
  • Roderick, M.L. and Farquhar, G.D., 2011. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resources Research, 47 (12), 12. doi:10.1029/2010WR009826
  • Rusu, M. and Simion, G., 2015. Farm structure adjustments under the irrigation systems rehabilitation in the southern plain of Romania: a first step towards sustainable development. Carpathian Journal of Earth and Environmental Sciences, 10 (3), 91–100.
  • Schaake, J.C. and Liu, C., May 1989. Development and application of simple water balance models to understand the relationship between climate and water resources. In: New directions for surface water modeling (Proceedings of the Baltimore symposium), IAHS Publication 181, May 1989 Maryland. Wallingford: IAHS Press, 343–352.
  • Schaake, J.C., 1990. From climate to flow. In: P.E. Waggoner, ed. Climate change and US water resources. New York: Wiley, 177–206.
  • Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63 (324), 1379–1389. doi:10.1080/01621459.1968.10480934
  • Shi, X., et al., 2019. Changes in major global river discharges directed into the ocean. International Journal of Environmental Research and Public Health, 16 (8), 8. doi:10.3390/ijerph16081469
  • Stefan, S., et al., 2004. Study of meteorological and hydrological drought in southern Romania from observational data. International Journal of Climatology, 24 (7), 871–881. doi:10.1002/joc.1039
  • Stocker, T.F., et al., eds., 2013. Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.
  • Tan, X. and Gan, T.Y., 2015. Contribution of human and climate change impacts to changes in streamflow of Canada. Scientific Reports. 5, 1–10. doi:10.1038/srep17767
  • Teuling, A.J., et al., 2019. Climate change, reforestation/afforestation,and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrology and Earth System Sciences, 23 (9), 3631–3652. doi:10.5194/hess-23-3631-2019
  • Ujvári, I., 1972. Geografia apelor României. București: Editura Științifică
  • Van Vliet, M.T.H., et al., 2015. European scale climate information services for water use sectors. Journal of Hydrology, 528, 503–513. doi:10.1016/j.jhydrol.2015.06.060
  • Vanonckelen, S. and Van Rompaey, A., 2015. Spatiotemporal analysis of the controlling factors of forest cover change in the Romanian Carpathian Mountains. Mountain Research and Development, 35 (4), 338–350. doi:10.1659/MRD-JOURNAL-D-15-00014
  • Vermote, E. and NOAA CDR Program, 2019. NOAA Climate Data Record (CDR) of AVHRR Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), version 5. NOAA National Centers for Environmental Information. doi:10.7289/V5TT4P69
  • Wada, Y., Van Beek, L.P.H., and Bierkens, M.F.P., 2011. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrology and Earth System Sciences, 15 (12), 3785–3808. doi:10.5194/hess-15-3785-2011
  • Wang, D. and Hejazi, M., 2011. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resources Research, 47 (10), 10. doi:10.1029/2010WR010283
  • Wang, S., et al., 2020. Globally partitioning the simultaneous impacts of climate-induced and human-induced changes on catchment streamflow: a review and meta-analysis. Journal of Hydrology, 590, 125387. doi:10.1016/j.jhydrol.2020.125387
  • Yang, H., Yang, D., and Hu, Q., 2014. An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff. Water Resources Research, 50 (12), 9620–9629. doi:10.1002/2014WR015451
  • Yang, H., et al., 2018. Changing the retention properties of catchments and their influence on runoff under climate change. Environmental Research Letters, 13 (9), 094019. doi:10.1088/1748-9326/aadd32
  • Zaharia, L., et al., 2016. Urbanization effects on the river systems in the Bucharest city region (Romania). Ecosystem Health and Sustainability, 2 (11), e01247. doi:10.1002/ehs2.1247
  • Zaharia, L., Ioana-Toroimac, G., and Perju, E.R., 2019. Hydrological impacts of climate changes in Romania. In: A.M. Negm, G. Romanescu, and M. Zeleňáková, eds. Water resources management in Romania. Springer, 309–351. doi:10.1007/978-3-030-22320-5_10
  • Zhang, L., et al., 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40 (2), 1–14. doi:10.1029/2003WR002710
  • Zheng, H., et al., 2009. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River basin. Water Resources Research, 45 (7), 7. doi:10.1029/2007WR006665
  • Zhu, Z., et al., 2016. Greening of the Earth and its drivers. Nature Climate Change, 6 (8), 791–795. doi:10.1038/nclimate3004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.