620
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Jointly estimating recharge and groundwater withdrawals of the NWSAS by inverting GRACE/GRACE-FO gravity data

, ORCID Icon, &
Pages 2215-2231 | Received 13 Oct 2021, Accepted 31 Aug 2022, Published online: 14 Nov 2022

References

  • Abatzoglou, J., et al., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 170191. doi:10.1038/sdata.2017.191
  • Al-Gamal, S.A., 2011. An assessment of recharge possibility to North-Western Sahara Aquifer System (NWSAS) using environmental isotopes. Journal of Hydrology, 398 (3–4), 184–190. doi:10.1016/j.jhydrol.2010.12.004
  • Allies, A., et al., 2020. Evapotranspiration estimation in the Sahel using a new ensemble-contextual method. Remote Sensing, 12 (3), 380. doi:10.3390/rs12030380
  • Bekhira, A., Habi, M., and Morsli, B., 2019. Management of hazard of flooding in arid region urban agglomeration using HECRAS and GIS software: the case of the Bechar’s city. Journal of Water and Land Development, 42 (VII–IX), 21–32. doi:10.2478/jwld-2019-0041
  • Benaraba, N., Yebdri, D., and Touati, F., 2016. Robust inversion for material parameters identification from correlated outlying observations. Inverse Problems in Science and Engineering, 24 (2), 177–194. doi:10.1080/17415977.2014.995184
  • Burdon, D.J., 1977. Flow of fossil groundwater. Quarterly Journal of Engineering Geology and Hydrogeology, 10 (2), 97–124. doi:10.1144/gsl.qjeg.1977.010.02.02
  • Castany, G., 1981. Hydrogeology of deep aquifers: the hydrogeological basin as the basis of groundwater management. Episodes, 3, 18–22. doi:10.18814/epiiugs/1981/v4i3/004
  • Chen, J., et al., 2014. Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 116, 130–138. doi:10.1016/j.gloplacha.2014.02.007
  • Chen, J., et al., 2016. Groundwater storage changes: present status from GRACE observations. Surveys in Geophysics, 37, 397–417. doi:10.1007/s10712-015-9332-4
  • Dahle, C., et al., 2019. The GFZ GRACE RL06 monthly gravity field time Series: processing details and quality assessment. Remote Sensing, 11 (18), 2116. doi:10.3390/rs11182116
  • Dahle, C. and Murböck, M., 2020. Post-processed GRACE/GRACE-FO geopotential GSM coefficients COST-G RL01 (Level-2B product). V. 0002. Helmholtz-Zentrums Geesthacht, Germany: GFZ Data Services. doi:10.5880/COST-G.GRAVIS_01_L2B
  • Darling, W.G., et al., 2018. The age and origin of groundwater in the Great Western Erg sub-basin of the North-Western Sahara aquifer system: insights from Krechba, central Algeria. Applied Geochemistry, 96, 277–286. doi:10.1016/j.apgeochem.2018.07.016
  • Fatolazadeh, F. and Goïta, K., 2022. Reconstructing groundwater storage variations from GRACE observations using a new Gaussian-Han-Fan (GHF) smoothing approach. Journal of Hydrology, 604, 127234. doi:10.1016/j.jhydrol.2021.127234
  • Fatolazadeh, F., Voosoghi, B., and Naeeni, M.R., 2016. Wavelet and Gaussian approaches for estimation of groundwater variations using GRACE data. Groundwater, 54 (1), 74–81. doi:10.1011/gwat.12325
  • Feng, H., 2016. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales. Scientific Reports, 6, 32782. doi:10.1038/srep32782
  • Frappart, F., 2020. Groundwater storage changes in the major North African transboundary aquifer systems during the GRACE Era (2003–2016). Water, 12 (10), 2669. doi:10.3390/w12102669
  • Gee, G.W. and Hillel, D., 1988. Groundwater recharge in arid regions: review and critique of estimation methods. Hydrological Processes, 2 (3), 255–266. doi:10.1002/hyp.3360020306
  • Gonçalvès, J., et al., 2013. Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophysical Research Letter, 40 (11), 2673–2678. doi:10.1002/grl.50478
  • Gonçalvès, J., et al., 2015. Declining water budget in a deep regional aquifer assessed by geostatistical simulations of stable isotopes: case study of the Saharan “Continental Intercalaire”. Journal of Hydrology, 531 (3), 821–829. doi:10.1016/j.jhydrol.2015.10.044
  • Gonçalvès, J., et al., 2020. Revisiting recharge and sustainability of the North-Western Sahara aquifers. Regional Environmental Change, 20 (2), 1–11. doi:10.1007/s10113-020-01627-4
  • Guendouz, A.H., et al., 2003. Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeology Journal, 11 (4), 483–495. doi:10.1007/s10040-003-0263-7
  • Guo, Y., et al., 2022. Evaluation of groundwater storage depletion using GRACE/GRACE Follow-On data with land surface models and its driving factors in Haihe river basin, China. Sustainability, 14 (3), 1108. doi:10.3390/su14031108
  • Hadeid, M., 2018. Impact des inondations et problématique de la gestion des risques naturels en milieu urbain saharien algérien [Impact of floods and problems of natural risk management in the Algerian Saharan urban environment]. Les Cahiers d’EMAM, 30. doi:10.4000/emam.1516
  • Hakimi, Y., et al., 2021. Hydrochemical and isotopic characteristics of groundwater in the Continental Intercalaire aquifer system: insights from Mzab ridge and surrounding regions, North of the Algerian Sahara. Journal of Hydrology: Regional Studies, 34, 100791. doi:10.1016/j.ejrh.2021.100791
  • Hasan, E. and Tarhule, A., 2021. Comparison of decadal water storage trends from common GRACE releases (RL05, RL06) using spatial diagnostics and a modified triple collocation approach. Journal of Hydrology X, 13, 100108. doi:10.1016/j.hydroa.2021.100108
  • Horvath, A., 2017. Retrieving geophysical signals from current and future satellite gravity missions. Ph.D. Thesis, Technische Universität München, München, Germany.
  • Horvath, A., et al., 2018. Decorrelation of GRACE time variable gravity field solutions using full covariance information. Geosciences, 8 (9), 323. doi:10.3390/geosciences8090323
  • Hwang, C., Wang, C.-G., and Lee, L.-H., 2002. Adjustment of gravity measurement using weighted and datum-free constraints. Computers and Geosciences, 28 (9), 1005–1015. doi:10.1016/S0098-3004(02)00005-5
  • Jyolsna, P.J., Kambhammettu, B.V.N.P., and Gorugantula, S., 2021. Application of random forest and multi-linear regression methods in downscaling GRACE derived groundwater storage changes. Hydrological Sciences Journal, 66 (5), 874–887. doi:10.1080/02626667.2021.1896719
  • Kinzelbach, W., et al., 2002. A Survey of methods for groundwater recharge in arid and semi-arid region. Nairobi: Early Warning and Assessment Report Series, UNEP/DEWA/RS.02-2, United Nations Environment Programme.
  • Koch, K.R., 1987. Parameter estimation and hypothesis testing in linear models. Berlin Heidelberg New York London Paris Tokyo: Springer-Verlag.
  • Kusche, J., 2007. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. Journal of Geodesy, 81 (11), 733–749. doi:10.1007/s00190-007-0143-3
  • Kusche, J., et al., 2009. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. Journal of Geodesy, 83 (10), 903–913. doi:10.1007/s00190-009-0308-3
  • Madi, M., et al., 2020. Flood risk assessment in Saharan regions. A case study (Bechar region, Algeria). Journal of Biodiversity and Environmental Sciences, 16 (1), 42–60. Available from:: https://ssrn.com/abstract=3569907.
  • Manghi, F., et al., 2009. Estimating regional groundwater recharge using a hydrological budget method. Water Resources Management, 23 (12), 2475–2489. doi:10.1007/s11269-008-9391-0
  • Maréchal, J.C., et al., 2006. Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. Journal of Hydrology, 329 (1–2), 281–293. doi:10.1016/J.JHYDROL.2006.02.022
  • Margat, J., 1990. Les gisements d’eau souterraine [Groundwater deposits]. La recherche, 221, 590–596.
  • Margat, J. and Saad, K.F., 1983. Concepts for the utilization of non-renewable groundwater resources in regional development. Natural Resources Forum (NRF), 7 (4), 377–384. doi:10.1111/j.1477-8947.1983.tb00282.x
  • Marlet, S., Bouksila, F., and Bahri, A., 2009. Water and salt balance at irrigation scheme scale: a comprehensive approach for salinity assessment in a Saharan oasis. Agricultural Water Management, 96 (9), 1311–1322. doi:10.1016/j.agwat.2009.04.016
  • Martens, B., et al., 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10 (5), 1903–1925. doi:10.5194/gmd-10-1903-2017
  • Matsumoto, T., et al., 2020. Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. Earth and Planetary Science Letters, 535, 116–120. doi:10.1016/j.epsl.2020.116120
  • Middleton, N. and Thomas, D., 1997. World Atlas of desertification. London: UNEP, Edward Arnold, 1–182.
  • Miralles, D.G., et al., 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15 (2), 453–469. doi:10.5194/hess-15-453-2011
  • Mohamed, A. and Gonçalvès, J., 2021. Hydro-geophysical monitoring of the North Western Sahara Aquifer System’s groundwater resources using gravity data. Journal of African Earth Sciences, 178, 104188. doi:10.1016/j.jafrearsci.2021.104188
  • Moiwo, J.P., Lu, W., and Tao, F., 2012. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China. Water Science & Technology, 65 (9), 1606–1614. doi:10.2166/wst.2012.053
  • Müller Schmied, H., et al., 2020. The global water resources and use model WaterGAP v2.2d - Standard model output. PANGAEA. doi:10.1594/PANGAEA.918447
  • Müller Schmied, H., et al., 2021. The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geoscientific Model Development, 14, 1037–1079. doi:10.5194/gmd-14-1037-2021
  • OSS (Sahara and Sahel Observatory), 2004a. The North-Western Sahara Aquifer System: a basin awareness - Hydrogeology. Vol. II. First ed. OSS, Tunis: Tunisia. 164. Available from: url:http://www.oss-online.org/sites/default/files/publications/OSS-SASS-II-HYDROGEOLOGY_En.pdf
  • OSS (Sahara and Sahel Observatory), 2004b. The North-Western Sahara Aquifer System: a basin awareness – mathematical model. Vol. IV. First ed. OSS, Tunis: Tunisia. 270. Available from: http://www.oss-online.org/sites/default/files/publications/OSS-SASS-IV-MOD-MATH_En.pdf
  • OSS (Sahara and Sahel Observatory), 2008. The North-Western Sahara Aquifer System (Algeria, Tunisia, Lybia) Joint management of a transborder water basin. OSS, Tunis: Synthesis Collection No 1, Tunisa, 48.
  • OSS (Sahara and Sahel Observatory), 2015. For a better valorization of irrigation water in the SASS basin diagnosis and recommendations. Tunis, Tunisia: OSS Synthesis. Available from: http://www.oss-online.org/sites/default/files/publications/OSS-SASS-Recomm-SASS-En_0.pdf
  • Ould-Baba-Sy, M., 2005. Recharge et paléorecharge du Système Aquifère du Sahara Septentrional [Recharge and paleorecharge of North Western Sahara Aquifer System]. Ph.D. Thesis, University of Tunis El Manar, Tunis, 271.
  • Ould-Baba-Sy, M., et al., 2007. Holocene and present recharge of the Saharan aquifers: a numerical modelling study. In: Aquifer systems management: darcy’s Legacy in a world of impending water shortage: selected papers on hydrogeology, 10. Boca Raton, FL.: Taylor and Francis/CRC Press, 191–205.
  • Petersen, J.O., et al., 2013. Water-rock interaction and residence time of groundwater inferred by 234U/238U disequilibria in the tunisian continental intercalaire aquifer system. Procedia Earth Planetary Science, 7, 685–688. doi:10.1016/j.proeps.2013.03.206
  • Petersen, J.O., et al., 2018. Groundwater flowpaths and residence times inferred by 14C, 36Cl and 4He isotopes in the Continental Intercalaire aquifer (North-Western Africa). Journal of Hydrology, 560, 11–23. doi:10.1016/j.jhydrol.2018.03.003
  • Pizzi, G. and Sartori, L., 1984. Interconnected undwater ystems imulation (IGROSS) - Description of the system and a case history application. Journal of Hydrology, 75 (1–4), 255–285. doi:10.1016/0022-1694(84)90053-2
  • Richey, A.S., et al., 2015. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resources Research, 51 (7), 5198–5216. doi:10.1002/2015WR017351
  • Richts, A., 2011. WHYMAP and the Groundwater Resources of the World 1:25,000,000, and J. Jones, et al. eds. Sustaining Groundwater Resources. pp 159–173. Springer, Dordrecht: International Year of Planet Earth. doi:10.1007/978-90-481-3426-7_10
  • Rodell, M., et al., 2009. Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002. doi:10.1038/nature08238
  • Scanlon, B.R., et al., 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20 (15), 3335–3370. doi:10.1002/hyp.6335
  • Scanlon, B.R., et al., 2018. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences (PNAS), 115 (6), E1080–E1089. doi:10.1073/pnas.1704665115
  • Scanlon, B.R., et al., 2022. Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environmental Research Letters, 17 (1), 014046. doi:10.1088/1748-9326/ac3bfc
  • Sophocleous, M.A., 1991. Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. Journal of Hydrology, 124 (3–4), 229–241. doi:10.1016/0022-1694(91)90016-b
  • Su, K., et al., 2022. Improving the accuracy of groundwater storage estimates based on groundwater weighted fusion model. Remote Sensing, 14 (1), 202. doi:10.3390/rs14010202
  • Taibi, R., 2019. Gestion concertée du Système Aquifère transfrontalier du Sahara Septentrional-SASS. Le mécanisme de concertation. [Concerted management of the Transboundary North Western System Aquifer Sahara-NWSAS. Consultation Mechanism]. National consultation workshop for Tunisia: Assessing the water food energy ecosystems nexus in the NWSAS, 3-4 April 2019, Hammamet, Tunisia. Available from: https://unece.org/fileadmin/DAM/env/water/meetings/2019/3-4_April_Tunisia/7_Taibi_Mecanisme_de_Concertation_du_SASS.pdf
  • Tarki, M., et al., 2011. Geochemical and isotopic composition of groundwater in the Complex Terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage. Environmental Earth Sciences, 64, 85–95. doi:10.1007/s12665-010-0820-z
  • Trambauer, P., et al., 2014. Comparison of different evaporation estimates over the African continent. Hydrology and Earth System Sciences, 18 (1), 193–212. doi:10.5194/hess-18-193-2014
  • United Nations Economic Commission for Europe (UNECE), 2020. The benefits of transboundary water cooperation in the North Western Sahara Aquifer System basin. Available from: https://unece.org/sites/default/files/2021-08/ENG_NWSAS_Brief_BenefitsTransbWatCoop_2020_Web.pdf
  • World-wide Hydrogeological Mapping and Assessment Program (WHYMAP) and Margat, J., 2008. Large Aquifer Systems of the World. Available from: https://www.whymap.org/
  • Zammouri, M. and Ribeiro, L., 2017. Analyzing the effect of transmissivity uncertainty on the reliability of a model of the northWestern Sahara aquifer system. Journal of African Earth Sciences, 129, 910–922. doi:10.1016/j.jafrearsci.2017.02.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.