279
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimal cropping pattern based on short-term streamflow forecasts to improve agricultural economic benefits and crop productivity under uncertainty conditions

ORCID Icon, &
Pages 246-260 | Received 28 Apr 2022, Accepted 13 Oct 2022, Published online: 11 Jan 2023

References

  • Bahrami, S., Ardejani, F.D., and Baafi, E., 2016. Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine. Journal of Hydrology, 536, 471–484. doi:10.1016/j.jhydrol.2016.03.002.
  • Bai, Y., et al., 2016. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. Journal of Hydrology, 532, 193–206. doi:10.1016/j.jhydrol.2015.11.011.
  • Broad, K., et al., 2007. Climate, stream flow prediction and water management in northeast Brazil: societal trends and forecast value. Climatic Change, 84 (2), 217–239. doi:10.1007/s10584-007-9257-0.
  • Fahimi, F., Yaseen, Z.M., and El-shafie, A., 2017. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theoretical and Applied Climatology, 128 (3), 875–903. doi:10.1007/s00704-016-1735-8.
  • Fathian, F., et al., 2019. Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and non-linear time series models. Journal of Hydrology, 575, 1200–1213. doi:10.1016/j.jhydrol.2019.06.025.
  • Government of Assam (GoA), Assam Human Development Report 2014 Guwahati Available from: http://niti.gov.in/writereaddata/files/human-development/Assam_HDR_30Sep2016.pdf
  • Govindaraju Rao, S., 2000. Artificial neural networks in hydrology. Journal of Hydrologic Engineering, 5 (April), 124–137. doi:10.1007/978-94-015-9341-0.
  • Huang, G., Baetz, B.W., and Patry, G.G., 1992. A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 9 (4), 319–335. doi:10.1080/02630259208970657.
  • Koutsoyiannis, D., Yao, H., and Georgakakos, A., 2008. Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods. Hydrological Sciences Journal, 53 (1), 142–164. doi:10.1623/hysj.53.1.142.
  • Kurukulasuriya, P. and Mendelsohn, R., 2008. Crop switching as a strategy for adapting to climate change. African Journal of Agricultural and Resource Economics, 2 (1), 105–126. http://ideas.repec.org/a/ags/afjare/56970.html
  • Li, X., et al., 2017. Applying uncertain programming model to improve regional farming economic benefits and water productivity. Agricultural Water Management, 179, 352–365. doi:10.1016/j.agwat.2016.06.030.
  • Maas, A.L., Hannun, A.Y., and Ng, A.Y., 2013. Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 28.
  • Mahto, A.K., et al., 2021. Short-term forecasting of agriculture commodities in context of indian market for sustainable agriculture by using the artificial neural network. Journal of Food Quality, 2021, 1–13. doi:10.1155/2022/1860460.
  • Mutlu, E., et al., 2008. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes, 22 (26), 5097–5106. doi:10.1002/hyp.7136.
  • Regulwar, D.G. and Gurav, J.B., 2012. Sustainable irrigation planning with imprecise parameters under fuzzy environment. Water Resources Management, 26 (13), 3871–3892. doi:10.1007/s11269-012-0109-y.
  • Sharma, A. and Goyal, M.K., 2018. Assessment of ecosystem resilience to hydroclimatic disturbances in India. Global Change Biology, 24 (2), e432–e441. doi:10.1111/gcb.13874.
  • Stephen, G., 1988. nonlinear neural networks: principles, mechanisms, and architectures. Nonlinear Neural Networks: Principles, Mechanisms, and Architectures, 1 (1), 17–61. doi:10.1016/0893-6080(88)90021-4.
  • Talukdar, G., Sarma, A.K., and Bhattacharjya, R.K., 2020. Mapping agricultural activities and their temporal variations in the riverine ecosystem of the Brahmaputra River using geospatial techniques. Remote Sensing Applications: Society and Environment, Elsevier, 20 (August), 100423. doi:10.1016/j.rsase.2020.100423.
  • Talukdar, G., Sarma, A.K., and Bhattacharjya, R.K., 2021. Sediment analysis and modelling based approach for optimal allocation of riverine sandbar for socio economic benefits. Ecological Engineering, 173 (September), 106415. doi:10.1016/j.ecoleng.2021.106415.
  • Talukdar, G., Sarma, A.K., and Bhattacharjya, R.K., 2022. Integrating optimization and damage estimation to increase economic benefit and ensure food security under seasonal land variability. Journal of Environmental Management, 320, 115872. doi:10.1016/j.jenvman.2022.115872.
  • Tucci, C.E., et al., 2008. Short and long term flow forecasting in the Rio Grande watershed (Brazil). Atmospheric Science Letters, 9 (2), 53–56. doi:10.1002/asl.165.
  • Van den Dool, H., 2007. Empirical methods in short-term climate prediction. Oxford: Oxford University Press. doi:10.1093/oso/9780199202782.001.0001.
  • Wang, R., Li, Y., and Tan, Q., 2015. A review of inexact optimization modeling and its application to integrated water resources management. Frontiers of Earth Science, 9 (1), 51–64. doi:10.1007/s11707-014-0449-4.
  • Wilby, R.L., Wedgbrow, C.S., and Fox, H.R., 2004. Seasonal predictability of the summer hydrometeorology of the River Thames, UK. Journal of Hydrology, 295 (1–4), 1–16. doi:10.1016/j.jhydrol.2004.02.015.
  • Wu, S. and Huang, G.H., 2007. An interval-parameter fuzzy approach for multiobjective linear programming under uncertainty. Journal of Mathematical Modelling and Algorithms, 6 (2), 195–212. doi:10.1007/s10852-006-9042-5.
  • Xu, B., et al., 2015. Empirical evaluation of rectified activations in convolutional network. Available from: http://arxiv.org/abs/1505.00853
  • Yao, H. and Georgakakos, A., 2001. Assessment of folsom lake response to historical and potential future climate scenarios 2. Reservoir Management. Journal of Hydrology, 249 (1–4), 176–196. doi:10.1016/S0022-1694(01)00418-8.
  • Yaseen, Z.M., et al., 2015. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530, 829–844. doi:10.1016/j.jhydrol.2015.10.038
  • Zhang, L.D., et al., 2014. Deficit irrigation optimization model for crop area allocation under uncertainties in Shiyang River basin, China. Sensor Letters, 12 (3–4), 867–875. doi:10.1166/sl.2014.3120.
  • Zhang, J., et al., 2018. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918–929. doi:10.1016/j.jhydrol.2018.04.065.
  • Zimmermann, H.J., 1978. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1 (1), 45–55. doi:10.1016/0165-0114(78)90031-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.