5,165
Views
4
CrossRef citations to date
0
Altmetric
Opinion Paper

Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023–2032

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 529-541 | Received 22 Jun 2022, Accepted 16 Dec 2022, Published online: 09 Mar 2023

References

  • Abram, N.J., et al., 2021. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2, 1–17. doi:10.1038/s43247-020-00065-8
  • Adcock, J. and Fottrell, E., 2008. The North-South information highway: case studies of publication access among health researchers in resource-poor countries. Global Health Action. 1. doi:10.3402/gha.v1i0.1865
  • Addo, K.A. and Adeyemi, M., 2013. Assessing the impact of sea-level rise on a vulnerable coastal community in Accra, Ghana. Jàmbá Journal Disaster Risk Stud, 5, 8. doi:10.4102/jamba.v5i1.60
  • Addor, N., et al., 2017. The CAMELS data set: catchment attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences, 21, 5293–5313. doi:10.5194/hess-21-5293-2017
  • Alfieri, L., et al., 2015. Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19, 2247–2260. doi:10.5194/hess-19-2247-2015
  • Allan, R.P., 2014. Dichotomy of drought and deluge. Nature Geoscience, 7, 700–701. doi:10.1038/ngeo2243
  • Allen, S.T. and Berghuijs, W.R., 2020. A need for incentivizing field hydrology, especially in an era of open data. Discussion of “The Role of Experimental Work in Hydrological Sciences – Insights from a Community Survey”*. Hydrological Sciences Journal, 65, 1262–1265. doi:10.1080/02626667.2018.1495837
  • Almagro, A., et al., 2021. CABra: a novel large-sample dataset for Brazilian catchments. Hydrology and Earth System Sciences, 25, 3105–3135. doi:10.5194/hess-25-3105-2021
  • Amigo, I., 2020. When will the Amazon hit a tipping point? Nature, 578, 505–507. doi:10.1038/d41586-020-00508-4
  • Anderson, W., et al., 2021. Violent conflict exacerbated drought-related food insecurity between 2009 and 2019 in sub-Saharan Africa. Nature Food, 2, 603–615. doi:10.1038/s43016-021-00327-4
  • Annan-Diab, F. and Molinari, C., 2017. Interdisciplinarity: practical approach to advancing education for sustainability and for the Sustainable Development Goals. Int. J. Manag. Educ. Principles for Responsible Management Education, 15, 73–83. doi:10.1016/j.ijme.2017.03.006
  • Ansah, S.O., et al., 2020. Meteorological Analysis of Floods in Ghana. Advances in Meteorology, 2020, e4230627. doi:10.1155/2020/4230627
  • Arsenault, R., et al., 2016. CANOPEX: a Canadian hydrometeorological watershed database. Hydrological Processes, 30, 2734–2736. doi:10.1002/hyp.10880
  • Bailey, R.M., 2011. Spatial and temporal signatures of fragility and threshold proximity in modelled semi-arid vegetation. Proceedings of the Royal Society B: Biological Sciences, 278, 1064–1071. doi:10.1098/rspb.2010.1750
  • Bakker, K., 2012. Water security: research challenges and opportunities. Science, 337, 914–915. doi:10.1126/science.1226337
  • Barneveld, H., Frings, R., and Hoitink, T., 2022. Massive morphological changes during the 2021 summer flood in the River Meuse (No. EGU22-11253). Presented at the EGU22, Copernicus Meetings, Vienna, Austria. doi:10.5194/egusphere-egu22-11253
  • Barron, O., et al., 2013. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, Western Australia. Resolution Outputs. doi:10.1002/hyp.10014
  • Beniston, M. and Stoffel, M., 2014. Assessing the impacts of climatic change on mountain water resources. The Science of the Total Environment, 493, 1129–1137. doi:10.1016/j.scitotenv.2013.11.122
  • Benito, G., et al., 2015. Quantitative historical hydrology in Europe. Hydrology and Earth System Sciences, 19, 3517–3539. doi:10.5194/hess-19-3517-2015
  • Bernardino, P.N., et al., 2020. Global-scale characterization of turning points in arid and semi-arid ecosystem functioning. Global Ecology and Biogeography, 29, 1230–1245. doi:10.1111/geb.13099
  • Bertola, M., et al., 2020. Flood trends in Europe: are changes in small and big floods different? Hydrol. Earth System Science Data, 24, 1805–1822. doi:10.5194/hess-24-1805-2020
  • Blöschl, G., et al., 2019. Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 64, 1141–1158. doi:10.1080/02626667.2019.1620507
  • Blume, T., van Meerveld, I., and Weiler, M., 2018. Incentives for field hydrology and data sharing: collaboration and compensation: reply to “A need for incentivizing field hydrology, especially in an era of open data”*. Hydrological Sciences Journal, 63, 1266–1268. doi:10.1080/02626667.2018.1495839
  • Brown, R.R., Deletic, A., and Wong, T.H.F., 2015. Interdisciplinarity: how to catalyse collaboration. Nature, 525, 315–317. doi:10.1038/525315a
  • Buitink, J., et al., 2020. Anatomy of the 2018 agricultural drought in The Netherlands using in situ soil moisture and satellite vegetation indices. Hydrology and Earth System Sciences, 1–17. doi:10.5194/hess-2020-358
  • Buitink, J., van Hateren, T.C., and Teuling, A.J., 2021. Hydrological system complexity induces a drought frequency paradox. Frontiers in Water. 3. doi:10.3389/frwa.2021.640976
  • Buras, A., Rammig, A., and Zang, C.S., 2020. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences, 17, 1655–1672. doi:10.5194/bg-17-1655-2020
  • Buytaert, W., et al., 2014. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Frontiers in Earth Science, 2.
  • Cao, Y.S. and Warford, J., 2006. Evolution of integrated approaches to water resource management in Europe and the United States: some lessons from experience.
  • Carvalho-Santos, C., et al., 2017. Climate change impacts on water resources and reservoir management: uncertainty and adaptation for a mountain catchment in Northeast Portugal. Water Resource Management, 31, 3355–3370. doi:10.1007/s11269-017-1672-z
  • Chen, L. and Wang, L., 2018. Recent Advance in Earth Observation Big Data for Hydrology. Big Earth Data, 2 (1), 86–107. doi:10.1080/20964471.2018.1435072.
  • Christidis, N. and Stott, P.A., 2021. The influence of anthropogenic climate change on wet and dry summers in Europe. Science Bulletin, 66, 813–823. doi:10.1016/j.scib.2021.01.020
  • Cortes Arevalo, V.J., et al., 2020. Storylines for practice: a visual storytelling approach to strengthen the science-practice interface. Sustainability Science, 15, 1013–1032. doi:10.1007/s11625-020-00793-y
  • Couasnon, A., et al., 2020. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Natural Hazards and Earth System Sciences, 20, 489–504. doi:10.5194/nhess-20-489-2020
  • Cui, Y., et al., 2018. Global water cycle and remote sensing big data: overview, challenge, and opportunities. Big Earth Data, 2, 282–297. doi:10.1080/20964471.2018.1548052
  • Cutter, S.L., et al., 2018. Flash flood risk and the paradox of urban development. Natural Hazards Review. 19. doi:10.1061/(ASCE)NH.1527-6996.0000268
  • Daily, G.C., 1997. Introduction: what are ecosystem services? In: G. Daily, ed. Nature’s services: societal dependence on natural ecosystems. Washington, DC: Island Press, 3.
  • Dai, L., Wörner, R., and van Rijswick, H.F.M.W., 2018. Rainproof cities in the Netherlands: approaches in Dutch water governance to climate-adaptive urban planning. International Journal of Water Resources Development, 34, 652–674. doi:10.1080/07900627.2017.1372273
  • Dakos, V., et al., 2019. Ecosystem tipping points in an evolving world. Nature Ecology and Evolution, 3, 355–362. doi:10.1038/s41559-019-0797-2
  • De Falco, S. and Fiorentino, G., 2022. The GERD dam in the water dispute between Ethiopia, Sudan and Egypt. A Scenario Analysis in an Ecosystem Approach between Physical and Geopolitical Geography. AIMS Geosci, 8, 233–253. doi:10.3934/geosci.2022014
  • De Luca, P., et al., 2020. Concurrent wet and dry hydrological extremes at the global scale. Earth System Dynamics, 11, 251–266. doi:10.5194/esd-11-251-2020
  • Denissen, J.M.C., et al., 2020. Critical soil moisture derived from satellite observations over Europe. Journal of Geophysical Research: Atmospheres. 125. doi:10.1029/2019JD031672
  • Devoie, É.G., et al., 2019. Taliks: a tipping point in discontinuous permafrost degradation in peatlands. Water Resources Research, 55, 9838–9857. doi:10.1029/2018WR024488
  • Di Baldassarre, G., et al., 2018. Water shortages worsened by reservoir effects. Nature Sustainability, 1, 617–622. doi:10.1038/s41893-018-0159-0
  • Dijkstra, Y.M., Schuttelaars, H.M., and Schramkowski, G.P., 2019. A regime shift from low to high sediment concentrations in a tide-dominated estuary. Geophysical Research Letters, 46, 4338–4345. doi:10.1029/2019GL082302
  • Drijfhout, S., et al., 2015. Catalogue of abrupt shifts in intergovernmental panel on climate change climate models. Proceedings of the National Academy of Sciences, 112, E5777–E5786. doi:10.1073/pnas.1511451112
  • Duan, W., et al., 2014. Anomalous atmospheric events leading to Kyushu’s flash floods, July 11 –14,2012. Natural Hazards, 73, 1255–1267. doi:10.1007/s11069-014-1134-3
  • Dudo, A. and Besley, J.C., 2016. Scientists’ prioritization of communication objectives for public engagement. PLOS ONE, 11, e0148867. doi:10.1371/journal.pone.0148867
  • Dunne, T. and Black, R.D., 1970a. An experimental investigation of runoff production in permeable soils. Water Resources Research, 6, 478–490. doi:10.1029/WR006i002p00478
  • Dunne, T. and Black, R.D., 1970b. Partial area contributions to storm runoff in a small New England Watershed. Water Resources Research, 6, 1296–1311. doi:10.1029/WR006i005p01296
  • Ehret, U., et al., 2014. Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 18, 649–671. doi:10.5194/hess-18-649-2014
  • Emerton, R.E., et al., 2016. Continental and global scale flood forecasting systems. WIREs Water, 3, 391–418. doi:10.1002/wat2.1137
  • Figura, S., et al., 2011. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophysical Research Letters. 38. doi:10.1029/2011GL049749
  • Gaffoor, Z., et al., 2020. Big Data Analytics and Its Role to Support Groundwater Management in the Southern African Development Community. Water, 12 (10), 2796. doi:10.3390/w12102796.
  • Gams, I. and Gabrovec, M., 1999. Land use and human impact in the Dinaric karst. International Journal of Speleology, 28, 55–70. doi:10.5038/1827-806X.28.1.4
  • Gil, Y., et al., 2016. Toward the geoscience paper of the future: best practices for documenting and sharing research from data to software to provenance. Earth Space Science, 3, 388–415. doi:10.1002/2015EA000136
  • Giupponi, C. and Gain, A.K., 2017. Integrated water resources management (IWRM) for climate change adaptation. Regional Environmental Change, 17, 1865–1867. doi:10.1007/s10113-017-1173-x
  • Gloor, M., et al., 2013. Intensification of the Amazon hydrological cycle over the last two decades. Geophysical Research Letters, 40, 1729–1733. doi:10.1002/grl.50377
  • Greve, P., et al., 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience, 7, 716–721. doi:10.1038/ngeo2247
  • Hall, C.A., et al., 2022. A hydrologist’s guide to open science. Hydrology and Earth System Sciences, 26, 647–664. doi:10.5194/hess-26-647-2022
  • Hamilton, L.C., Hartter, J., and Saito, K., 2015. Trust in scientists on climate change and vaccines. SAGE Open, 5, 2158244015602752. doi:10.1177/2158244015602752
  • Held, I.M. and Soden, B.J., 2006. Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 5686–5699. doi:10.1175/JCLI3990.1
  • Higgins, P.A.T., Chan, K.M.A., and Porder, S., 2006. Bridge over a philosophical divide. Evidence & Policy, 2, 249–255. doi:10.1332/174426406777068920
  • Hirota, M., et al., 2011. Global resilience of tropical forest and savanna to critical transitions. Science, 334, 232–235. doi:10.1126/science.1210657
  • Hoitink, A.J.F., et al., 2020. Resilience of river deltas in the anthropocene. Journal of Geophysical Research: Earth Surface, 125, e2019JF005201. doi:10.1029/2019JF005201
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275. doi:10.1130/0016-7606(1945)56[275:
  • Hrachowitz, M., et al., 2013. A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 58, 1198–1255. doi:10.1080/02626667.2013.803183
  • Huntington, T.G., 2006. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319, 83–95. doi:10.1016/j.jhydrol.2005.07.003
  • IPCC, 2021. Climate change 2021: the physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
  • Keefer, D.K., et al., 1987. Real-time landslide warning during heavy rainfall. Science, 238, 921–925. doi:10.1126/science.238.4829.921
  • Kennedy, D., et al., 2016. The response of high-impact blocking weather systems to climate change. Geophysical Research Letters, 43, 7250–7258. doi:10.1002/2016GL069725
  • Kirchner, J.W., 2017. Science, politics, and rationality in a partisan era. Water Resources Research, 53, 3545–3549. doi:10.1002/2017WR020882
  • Kirwan, M.L. and Megonigal, J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 53–60. doi:10.1038/nature12856
  • Kitoh, A., et al., 2013. Monsoons in a changing world: a regional perspective in a global context. Journal of Geophysical Research: Atmospheres, 118, 3053–3065. doi:10.1002/jgrd.50258
  • Klingler, C., Schulz, K., and Herrnegger, M., 2021. LamaH-CE: lArge-SaMple data for hydrology and environmental sciences for Central Europe. Earth System Science Data, 13, 4529–4565. doi:10.5194/essd-13-4529-2021
  • Konkol, A., et al., 2022. Interplay of river and tidal forcings promotes loops in coastal channel networks. Geophysical Research Letters, 49 (e2022GL098284). doi:10.1029/2022GL098284
  • Kreibich, H., et al., 2017. Scientific debate of Panta Rhei research – how to advance our knowledge of changes in hydrology and society? Hydrol. Science Journal, 62, 331–333. doi:10.1080/02626667.2016.1209929
  • Kreienkamp, F., et al., 2021. Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021. World Weather Attribution. https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf
  • Krishnamurthy, R.P.K., et al., 2020. Applying tipping point theory to remote sensing science to improve early warning drought signals for food security. Earths Future, 8, e2019EF001456. doi:10.1029/2019EF001456
  • Krol, M.S., Jaeger, A.-K., and Bronstert, A., 2003. Integrated modeling of climate change impacts in Northeastern Brazil. In: T. Gaiser, et al., eds. Global change and regional impacts: water availability and vulnerability of ecosystems and society in the Semiarid Northeast of Brazil. Berlin, Heidelberg: Springer, 43–56. doi:10.1007/978-3-642-55659-3_3
  • Kumar, S., et al., 2015. Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophysical Research Letters, 42 (10), 867–10, 875. doi:10.1002/2015GL066858
  • Kundzewicz, Z., 2008. Climate change impacts on the hydrological cycle. Ecohydrology & Hydrobiology, 8, 195–203. doi:10.2478/v10104-009-0015-y
  • Kupec, P., Deutscher, J., and Futter, M., 2021. Longer growing seasons cause hydrological regime shifts in Central European Forests. Forests, 12, 1656. doi:10.3390/f12121656
  • Lang, D.J., et al., 2012. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability Science. 7. doi:10.1007/s11625-011-0149-x
  • Lawton, G., 2021. Data quality for big data: why it’s a must and how to improve it. https://www.techtarget.com/searchdatamanagement/feature/Data-quality-for-big-data-Why-its-a-must-and-how-to-improve-it ( accessed 5 Nov 2022).
  • Lele, S., 2009. Watershed services of tropical forests: from hydrology to economic valuation to integrated analysis. Current Opinion in Environmental Sustainability, 1, 148–155. doi:10.1016/j.cosust.2009.10.007
  • Lélé, S. and Norgaard, R.B., 2005. Practicing Interdisciplinarity. BioScience, 55, 967–975. doi:10.1641/0006-3568(2005)055[0967:
  • Lenderink, G., et al., 2017. Super-clausius–clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. Journal of Climate, 30, 6037–6052. doi:10.1175/JCLI-D-16-0808.1
  • Lenderink, G. and van Meijgaard, E., 2008. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geoscience, 1, 511–514. doi:10.1038/ngeo262
  • Lenton, T.M., et al., 2019. Climate tipping points — too risky to bet against. Nature, 575, 592–595. doi:10.1038/d41586-019-03595-0
  • Lintern, A., et al., 2020. Best management practices for diffuse nutrient pollution: wicked problems across urban and agricultural watersheds. Environmental Science & Technology, 54, 9159–9174. doi:10.1021/acs.est.9b07511
  • Linton, J. and Budds, J., 2014. The hydrosocial cycle: defining and mobilizing a relational-dialectical approach to water. Geoforum, 57, 170–180. doi:10.1016/j.geoforum.2013.10.008
  • Liu, Y., et al., 2014. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji–Tire model. Hydrology and Earth System Sciences, 18, 1289–1303. doi:10.5194/hess-18-1289-2014
  • Liu, K., et al., 2020. Elucidating the vertical transport of microplastics in the water column: a review of sampling methodologies and distributions. Water Research, 186, 116403. doi:10.1016/j.watres.2020.116403
  • Loew, A., et al., 2017. Validation practices for satellite-based Earth observation data across communities. Reviews of Geophysics, 55, 779–817. doi:10.1002/2017RG000562
  • Lovejoy, T.E. and Nobre, C., 2018. Amazon Tipping Point. Science Advances, 4 (eaat2340). doi:10.1126/sciadv.aat2340
  • Loverde-Oliveira, S.M., et al., 2009. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems, 12, 807.
  • Lucas, Z. and MacGregor, C., 2006. Characterization and source of oil contamination on the beaches and seabird corpses, Sable Island, Nova Scotia, 1996–2005. Marine Pollution Bulletin, 52, 778–789. doi:10.1016/j.marpolbul.2005.11.023
  • Lutz, S.R., et al., 2018. HESS opinions: science in today’s media landscape – challenges and lessons from hydrologists and journalists. Hydrology and Earth System Sciences, 22, 3589–3599. doi:10.5194/hess-22-3589-2018
  • Madakumbura, G.D., et al., 2019. Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Scientific Reports, 9, 3483. doi:10.1038/s41598-019-39936-2
  • Marty, C., 2008. Regime shift of snow days in Switzerland. Geophysical Research Letters. 35. doi:10.1029/2008GL033998
  • Mayor, A.G., et al., 2019. Connectivity-mediated ecohydrological feedbacks and regime shifts in Drylands. Ecosystems, 22, 1497–1511. doi:10.1007/s10021-019-00366-w
  • McCluney, K.E., et al., 2012. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biological Reviews, 87, 563–582. doi:10.1111/j.1469-185X.2011.00209.x
  • McMillan, H., et al., 2016. Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 61, 1174–1191. doi:10.1080/02626667.2016.1159308
  • McMillan, H.K., Westerberg, I.K., and Krueger, T., 2018. Hydrological data uncertainty and its implications. WIREs Water, 5, e1319. doi:10.1002/wat2.1319
  • Meyer, J., et al., 2021. More frequent flash flood events and extreme precipitation favouring atmospheric conditions in temperate regions of Europe. Hydrology and Earth System Sciences, 1–28. doi:10.5194/hess-2021-628
  • Milly, P.C.D., et al., 2008. Stationarity is dead. Whither Water Management? Science, 319, 573–574. doi:10.1126/science.1151915
  • Montanari, A., et al., 2013. “Panta rhei—everything flows”: change in hydrology and society—the IAHS scientific decade 2013–2022. Hydrological Sciences Journal, 58, 1256–1275. doi:10.1080/02626667.2013.809088
  • Montanari, A., 2021. ‘International Association of Hydrological Sciences -IAHS Activities’ Report – Year 2020. Bologna. https://www.cnr.it/it/organismi-scientifici-internazionali/relazione/404/relazione-2020-eng-iahs.pdf.
  • Mukhtarov, F., Papyrakis, E., Rieger, M., 2022. Covid-19 and Water. In: E. Papyrakis, ed. COVID-19 and international development. Berlin, Germany: Springer International Publishing, Cham, 157–173. doi:10.1007/978-3-030-82339-9_12
  • Nace, R.L., 1965. Status of the international hydrological decade. Journal AWWA, 57, 819–823. doi:10.1002/j.1551-8833.1965.tb01468.x
  • Nijp, J.J., et al., 2019. Spatial early warning signals for impending regime shifts: a practical framework for application in real-world landscapes. Global Change Biology, 25, 1905–1921. doi:10.1111/gcb.14591
  • Nilson, E., 2014. Auswirkungen des Klimawandels auf das Abflussgeschehen und die Binnenschifffahrt in Deutschland: schlussbericht KLIWAS-Projekt 4.01, KLIWAS-Schriftenreihe/BfG – KLIWAS-43/2014. Bundesanstalt für Gewässerkunde, Koblenz. 10.5675/KLIWAS_43/2014_4.01
  • Nobis, K., et al., 2020. Die Anwendung der ländlichen Bodenordnung bei der Renaturierung und naturnahen Entwicklung von Fließgewässern, 1. Aufl. 2020. Wiesbaden Heidelberg: Springer Spektrum.
  • Oberle, B., et al., 2019. Global resources outlook: 2019. Paris, France: International Resource Panel, United Nations Envio.
  • Ojea, E., Martin-Ortega, J., and Chiabai, A., 2012. Defining and classifying ecosystem services for economic valuation: the case of forest water services. Environmental Science & Policy, 19–20, 1–15. doi:10.1016/j.envsci.2012.02.002
  • Oki, T. and Kanae, S., 2006. Global hydrological cycles and world water resources. Science, 313, 1068–1072. doi:10.1126/science.1128845
  • Otto, F.E.L., et al., 2018. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environmental Research Letters, 13, 124010. doi:10.1088/1748-9326/aae9f9
  • Otto, I.M., et al., 2020. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proceedings of the National Academy of Sciences, 117, 2354–2365. doi:10.1073/pnas.1900577117
  • Owens, P.N., et al., 2005. Fine-grained sediment in river systems: environmental significance and management issues. River Research and Applications, 21, 693–717. doi:10.1002/rra.878
  • Pappenberger, F., et al., 2015. The monetary benefit of early flood warnings in Europe. Environmental Science & Policy, 51, 278–291. doi:10.1016/j.envsci.2015.04.016
  • Paprotny, D., et al., 2018. Trends in flood losses in Europe over the past 150 years. Nature Communications, 9, 1985. doi:10.1038/s41467-018-04253-1
  • Payraudeau, G., 2012. Modelling pesticides transfer to surface water at the catchment scale: a multi-criteria analysis. Agronomy for Sustainable Development, 32, 479–500. doi:10.1007/s13593-011-0023-3
  • Peleg, N., et al., 2018. Intensification of convective rain cells at warmer temperatures observed from high-resolution weather radar data. Journal Hydrometeorol, 19, 715–726. doi:10.1175/JHM-D-17-0158.1
  • Pendergrass, A.G., et al., 2017. Precipitation variability increases in a warmer climate. Scientific Reports, 7, 17966. doi:10.1038/s41598-017-17966-y
  • Pijl, A., et al., 2018. Hydrologic impacts of changing land use and climate in the Veneto lowlands of Italy. Anthropocene, 22, 20–30. doi:10.1016/j.ancene.2018.04.001
  • Piper, D., et al., 2016. Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany – part 1: meteorological background. Natural Hazards and Earth System Sciences, 16, 2835–2850. doi:10.5194/nhess-16-2835-2016
  • Popp, A.L., et al., 2019. A global survey on the perceptions and impacts of gender inequality in the Earth and Space Sciences. Earth Space Science, 6, 1460–1468. doi:10.1029/2019EA000706
  • Prasad, N., 2006. Privatisation results: private sector participation in water services after 15 years. Development Policy Review, 24, 669–692. doi:10.1111/j.1467-7679.2006.00353.x
  • Raška, P., et al., 2022. Identifying barriers for nature-based solutions in flood risk management: an interdisciplinary overview using expert community approach. Journal of Environmental Management, 310, 114725. doi:10.1016/j.jenvman.2022.114725
  • Rockström, J., et al., 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14 (art32). doi:10.5751/ES-03180-140232
  • Rosier, S.H.R., et al., 2021. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. The Cryosphere, 15, 1501–1516. doi:10.5194/tc-15-1501-2021
  • Rotzoll, K. and Fletcher, C.H., 2013. Assessment of groundwater inundation as a consequence of sea-level rise. Nature Climate Change, 3, 477–481. doi:10.1038/nclimate1725
  • Russell, C., et al., 2021. Geological evolution of the mississippi river into the anthropocene. Anthropology Review, 8, 115–140. doi:10.1177/20530196211045527
  • Savenije, H.H.G. and Van der Zaag, P., 2008. Integrated water resources management: concepts and issues. Physics Chemistry of the Earth Parts ABC, Integrated Water Resources Management in a Changing World, 33, 290–297. doi:10.1016/j.pce.2008.02.003
  • Scheffer, M., et al., 2009. Early-warning signals for critical transitions. Nature, 461, 53–59. doi:10.1038/nature08227
  • Scheffer, M., et al., 2012. Anticipating critical transitions. Science, 338, 344–348. doi:10.1126/science.1225244
  • Scott, C.A., et al., 2014. Irrigation efficiency and water-policy implications for river basin resilience. Hydrology and Earth System Sciences, 18, 1339–1348. doi:10.5194/hess-18-1339-2014
  • Seidl, R. and Barthel, R., 2017. Linking scientific disciplines: hydrology and social sciences. Journal of Hydrology, 550, 441–452. doi:10.1016/j.jhydrol.2017.05.008
  • Sene, K., 2010. Hydrometeorology.
  • Seneviratne, S.I., et al., 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Science Review, 99, 125–161. doi:10.1016/j.earscirev.2010.02.004
  • Serajuddin, U., et al., 2017. Atlas of sustainable development goals 2017: world development indicators. Disclosure, vi–ix.
  • Sivapalan, M., et al., 2003. IAHS decade on Predictions in Ungauged Basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48, 857–880. doi:10.1623/hysj.48.6.857.51421
  • Sorensen, J.H., 2000. Hazard warning systems: review of 20 years of progress. Natural Hazards Review, 1, 119–125. doi:10.1061/(ASCE)1527-6988(2000)1:2(119)
  • Stall, S., et al., 2017. Enabling FAIR data across the Earth and Space Sciences. Eos. doi:10.1029/2017EO088425
  • Steffen, W., et al., 2015. Planetary boundaries: guiding human development on a changing planet. Science, 347, 1259855. doi:10.1126/science.1259855
  • Steffen, W., et al., 2018. Trajectories of the Earth System in the anthropocene. Proceedings of the National Academy of Sciences, 115, 8252–8259. doi:10.1073/pnas.1810141115
  • Strober, M.H., 2006. Habits of the mind: challenges for multidisciplinary engagement. Social Epistemology, 20, 315–331. doi:10.1080/02691720600847324
  • Sutanto, S.J., et al., 2019. Moving from drought hazard to impact forecasts. Nature Communications, 10, 4945. doi:10.1038/s41467-019-12840-z
  • Sutanto, S.J., Wetterhall, F., and Lanen, H.A.J.V., 2020. Hydrological drought forecasts outperform meteorological drought forecasts. Environmental Research Letters, 15, 084010. doi:10.1088/1748-9326/ab8b13
  • Szklarek, S., Górecka, A., and Wojtal-Frankiewicz, A., 2022. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution - A review. The Science of the Total Environment, 805, 150289. doi:10.1016/j.scitotenv.2021.150289
  • Talke, S.A. and Jay, D.A., 2013. Nineteenth Century North American and Pacific tidal data: lost or just forgotten? Journal Coast Restaurant, 29, 118–127. doi:10.2112/JCOASTRES-D-12-00181.1
  • Task Force Fact-finding hoogwater, 2021. Hoogwater 2021; Feiten en Duiding. Expertisenetwerk waterveiligheid.
  • Tennant, J.P., et al., 2016. The academic, economic and societal impacts of open access: an evidence-based review. F1000Research, 5, 632. doi:10.12688/f1000research.8460.3
  • Tiselius, P. and Magnusson, K., 2017. Toxicity of treated bilge water: the need for revised regulatory control. Marine Pollution Bulletin, 114, 860–866. doi:10.1016/j.marpolbul.2016.11.010
  • Underwood, E.C., et al., 2018. Climate change impacts on hydrological services in Southern California. Environmental Research Letters 13, No, 12, 124019. doi:10.1088/1748-9326/aaeb59
  • United Nations, 2015. Transforming our world: the 2030 agenda for sustainable development.
  • van der Velde, Y., et al., 2021. Emerging forest-peatland bistability and resilience of European peatland carbon stores. Proceedings of the National Academy of Sciences of the United States of America, 118, e2101742118. doi:10.1073/pnas.2101742118
  • van de Vijsel, R.C., et al., 2021. Algal-induced biogeomorphic feedbacks lay the groundwork for coastal wetland development. Journal of Geophysical Research Biogeosciences, 126 (e2021JG006515). doi:10.1029/2021JG006515
  • van Emmerik, T., et al., 2018. Reporting negative results to stimulate experimental hydrology. Discussion of “The Role of Experimental Work in Hydrological Sciences – Insights from a Community Survey.” Hydrological Sciences Journal, 63, 1269–1272. doi:10.1080/02626667.2018.1493203
  • van Emmerik, T. and Schwarz, A., 2020. Plastic debris in rivers. WIREs Water, 7, e1398. doi:10.1002/wat2.1398
  • van Loon, A.F., 2015. Hydrological drought explained. WIREs Water, 2, 359–392. doi:10.1002/wat2.1085
  • Van Noorden, R., 2015. Interdisciplinary research by the numbers. Nature News, 525, 306. doi:10.1038/525306a
  • Venhuizen, G.J., et al., 2019. Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience. Hydrology and Earth System Sciences, 23, 393–403. doi:10.5194/hess-23-393-2019
  • Verbesselt, J., et al., 2016. Remotely sensed resilience of tropical forests. Nature Climate Change, 6, 1028–1031.
  • Vicente-Serrano, S.M., et al., 2020. Global characterization of hydrological and meteorological droughts under future climate change: the importance of timescales, vegetation-CO2 feedbacks and changes to distribution functions. International Journal of Climatology, 40, 2557–2567. doi:10.1002/joc.6350
  • Vörösmarty, C.J., et al., 2010. Global threats to human water security and river biodiversity. Nature, 467, 555–561. doi:10.1038/nature09440
  • Vörösmarty, C.J. and Sahagian, D., 2000. Anthropogenic disturbance of the terrestrial water cycle. BioScience, 50, 753–765. doi:10.1641/0006-3568(2000)050[0753:
  • Wahl, T., et al., 2015. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Climate Change, 5, 1093–1097. doi:10.1038/nclimate2736
  • Waldschläger, K., et al., 2022. Learning from natural sediments to tackle microplastics challenges: a multidisciplinary perspective. Earth-Science Review, 228, 104021. doi:10.1016/j.earscirev.2022.104021
  • Ward, P.J., et al., 2018. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environmental Research Letters, 13, 084012. doi:10.1088/1748-9326/aad400
  • Wasko, C., et al., 2021. Understanding trends in hydrologic extremes across Australia. Journal of Hydrology, 593, 125877. doi:10.1016/j.jhydrol.2020.125877
  • Webster, J.R., et al., 2016. Evidence for a regime shift in nitrogen export from a forested watershed. Ecosystems, 19, 881–895. doi:10.1007/s10021-016-9974-1
  • West, H., Quinn, N., and Horswell, M., 2019. Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. Remote Sensing of Environment, 232, 111291. doi:10.1016/j.rse.2019.111291
  • Wilby, R.L., 2019. A global hydrology research agenda fit for the 2030s. Hydrology Research, 50, 1464–1480. doi:10.2166/nh.2019.100
  • Wilkinson, M.D., et al., 2016. The FAIR guiding principles for scientific data management and stewardship. Science Data, 3, 160018. doi:10.1038/sdata.2016.18
  • World Bank Group, 2021. Global Water Security and Sanitation Partnership Annual Report 2021.
  • Ziegler, A.D., et al., 2003. Detection of intensification in global- and continental-scale hydrological cycles: temporal scale of evaluation. Journal of Climate, 16, 535–547. doi:10.1175/1520-0442(2003)016<0535:
  • Zipper, S.C., et al., 2020. Integrating the water planetary boundary with water management from local to global scales. Earths Future, 8 (e2019EF001377). doi:10.1029/2019EF001377
  • Zscheischler, J., et al., 2018. Future climate risk from compound events. Nature Climate Change, 8, 469–477. doi:10.1038/s41558-018-0156-3