190
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identifying the main factors driving groundwater stress in a semi-arid region, southern Iran

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 840-855 | Received 10 Jul 2022, Accepted 22 Nov 2022, Published online: 20 Apr 2023

References

  • Alipour, M. and Derakhshani, R., 2010. Identification of hydrogeological properties using the results of the groundwater modelling. Research Journal of Environmental Toxicology, 4 (2), 67–76. doi:10.3923/rjet.2010.67.76.
  • Allen, R.G., et al., 1998. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Fao, Rome, 300 (9), D05109.
  • AOF, 2020. Agriculture organization of fars. Fars Province, Iran: Kavar Agricultural Jahad Centers.
  • Bates, B., Kundzewicz, Z., and Wu, S., 2008. Climate change and water. Geneva: Intergovernmental Panel on Climate Change Secretariat, 210.
  • Beaulieu, et al., 2016. Hydrological and vegetation response to climate change in a forested mountainous catchment. Modelling Earth Systems and Environment, 2 (4), 1–15. doi:10.1007/s40808-016-0244-1.
  • Bhat, V., et al., 2018. Spatiotemporal relationship linking land use/land cover with groundwater level. In Groundwater: Select Proceedings of ICWEES-2016. Singapore: Springer, 41–54. doi:10.1007/978-981-10-5789-2_4.
  • Bilal, H., Govindan, R., and Al-Ansari, T., 2021. Investigation of groundwater depletion in the state of Qatar and its implication to energy water and food nexus. Water, 13 (18), 2464. doi:10.3390/w13182464.
  • Bougara, H., et al., 2020. Analyzing trend and variability of rainfall in the Tafna basin (Northwestern Algeria). Atmosphere, 11 (4), 347. doi:10.3390/atmos11040347.
  • Condon, L.E. and Maxwell, R.M., 2019. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Science Advances, 5 (6), eaav4574. doi:10.1126/sciadv.aav4574.
  • Cui, Y., et al., 2020. The response of groundwater level to climate change and human activities in Baotou City, China. Water, 12 (4), 1078. doi:10.3390/w12041078.
  • Dalin, C., et al., 2017. Groundwater depletion embedded in international food trade. Nature, 543 (7647), 700–704. doi:10.1038/nature21403.
  • Didan, K., 2015. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Processes DAAC, 10, 415. doi:10.5067/MODIS/MOD13Q1.006
  • Dorigo, W., et al., 2017. ESA CCI soil moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sensing of Environment, 203, 185–215. doi:10.1016/j.rse.2017.07.001.
  • Frenken, K. and Gillet, V., 2012. Irrigation water requirement and water withdrawal by Country, AQUASTAT. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Frollini, E., et al., 2021. Groundwater quality trend and trend reversal assessment in the European water framework directive context: an example with nitrates in Italy. Environmental Science and Pollution Research, 28 (17), 22092–22104. doi:10.1007/s11356-020-11998-0.
  • Gadedjisso-Tossou, A., Adjegan, K.I., and Kablan, A.K.M., 2021. Rainfall and temperature trend analysis by Mann–Kendall test and significance for rainfed cereal yields in Northern Togo. Sci, 3 (1), 17. doi:10.3390/sci3010017.
  • Garg, K.K., et al., 2020. Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India. Journal of Hydrology: Regional Studies, 31, 100732. doi:10.1016/j.ejrh.2020.100732.
  • Green, T.R., 2016. Linking climate change and groundwater. In: A.J. Jakeman, O. Barreteau, R.J. Hunt, J.D. Rinaudo and A. Ross, eds. Integrated groundwater management. Cham: Springer, 97–141. doi:10.1007/978-3-319-23576-9_5.
  • Gruber, A., et al., 2019. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth System Science Data, 11 (2), 717–739. doi:10.5194/essd-11-717-2019.
  • Guermazi, E., et al., 2019. Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment. Mitigation and Adaptation Strategies for Global Change, 24 (1), 73–92. doi:10.1007/s11027-018-9797-9.
  • Hamilton, J.D., 2020. Time series analysis. 2nd ed. Princeton, New Jersey: Princeton University Press.
  • Igbadun, H.E., 2008. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrigation Science, 27 (1), 11–23. doi:10.1007/s00271-008-0117-0.
  • Jafary, F. and Bradley, C., 2018. Groundwater irrigation management and the existing challenges from the farmers’ perspective in central Iran. Land, 7 (1), 15. doi:10.3390/land7010015.
  • Karam, F., et al., 2007. Evapotranspiration, seed yield, and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions. Agricultural Water Management, 90 (3), 213–223. doi:10.1016/j.agwat.2007.03.009.
  • Kendall, M., 1975. Rank correlation methods. New York, NY: Oxford University Press.
  • Keum, J., et al., 2017. Entropy applications to water monitoring network design: a review. Entropy, 19 (11), 613. doi:10.3390/e19110613.
  • Khazaei, B., et al., 2019. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 569, 203–217. doi:10.1016/j.jhydrol.2018.12.004.
  • Khosravi, R., et al., 2019. Geochemical and hydrological controls of arsenic concentrations across the sediment–water interface at Maharlu Lake, southern Iran. Applied Geochemistry, 102, 88–101. doi:10.1016/j.apgeochem.2019.01.008
  • Kocsis, T., Kovács-Székely, I., and Anda, A., 2020. Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoretical and Applied Climatology, 139 (3), 849–859. doi:10.1007/s00704-019-03014-4.
  • Lam, Q.D., Meon, G., and Pätsch, M., 2021. A coupled modelling approach to assess the effects of climate change on a coastal groundwater system. Groundwater for Sustainable Development, 14, 100633. doi:10.1016/j.gsd.2021.100633
  • Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13 (3), 245–259. doi:10.2307/1907187.
  • Mehdizadeh, R., Zarei, M., and Raeisi, E., 2015. How subaerial salt extrusions influence water quality in adjacent aquifers. Journal of Hydrology, 531, 1108–1113. doi:10.1016/j.jhydrol.2015.11.021
  • Multsch, S., et al., 2017. Water-saving strategies for irrigation agriculture in Saudi Arabia. International Journal of Water Resources Development, 33 (2), 292–309. doi:10.1080/07900627.2016.1168286.
  • Naderi, M., Raeisi, E., and Zarei, M., 2016. The impact of halite dissolution of salt diapirs on surface and ground water under climate change, South-Central Iran. Environmental Earth Sciences, 75 (8), 1–13. doi:10.1007/s12665-016-5525-5.
  • NASA, 2014. Vegetation indices 16-day L3 global 250m (MOD13Q1). Available from: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1 [ Accessed 26 May 2016].
  • Nekouei, E. and Zarei, M., 2017. Karst hydrogeology of Karmustadj salt diapir, southern Iran. Carbonates and Evaporites, 32 (3), 315–323. doi:10.1007/s13146-016-0298-1.
  • Ojeda Olivares, E.A., et al., 2019. Climate change, land use/land cover change, and population growth as drivers of groundwater depletion in the Central Valleys, Oaxaca, Mexico. Remote Sensing, 11 (11), 1290. doi:10.3390/rs11111290.
  • Pan, Z., et al., 2015. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. International Journal of Applied Earth Observation and Geoinformation, 34, 188–197. doi:10.1016/j.jag.2014.08.011.
  • Parab Fars Consulting Engineering Company, 2015. Water balance studies in Mond River Basin leading to 2010–2011. Shiraz: Fars Regional Water Authority (In Persian).
  • Peng, W., Kuang, T., and Tao, S., 2019. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. Journal of Cleaner Production, 233, 353–367.‏
  • Pettitt, A.N., 1979. A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society. Series C, Applied Statistics, 28 (2), 126–135. doi:10.2307/2346729.
  • Pfeiffer, L. and Lin, C.-Y.C., 2014. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. Journal of Environmental Economics and Management, 67 (2), 189–208.
  • Pulido-Velazquez, M., et al., 2015. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the mancha oriental system (Spain). Hydrology and Earth System Sciences, 19 (4), 1677–1693. doi:10.5194/hess-19-1677-2015.
  • Runge, J., Petoukhov, V., and Kurths, J., 2014. Quantifying the strength and delay of climatic interactions: the ambiguities of cross correlation and a novel measure based on graphical models. Journal of Climate, 27 (2), 720–739. doi:10.1175/JCLI-D-13-00159.1.
  • Salik, A.W. and Karacabey, E., 2019. Application of landsat 8 satellite image–NDVI time series for crop phenology mapping: case study Balkh and Jawzjan regions of Afghanistan. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5 (1), 49–62. doi:10.28979/comufbed.557792.
  • Schmid, J.N., 2017. Using Google Earth Engine for landsat NDVI time series analysis to indicate the present status of forest stands. Basel, Switzerland: Georg-August-Universität Göttingen. doi:10.13140/RG.2.2.34134.14402/6.
  • Schultz, M., et al., 2016. Performance of vegetation indices from Landsat time series in deforestation monitoring. International Journal of Applied Earth Observation and Geoinformation, 52, 318–327. doi:10.1016/j.jag.2016.06.020.
  • Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63 (324), 1379–1389. doi:10.1080/01621459.1968.10480934.
  • Tabarmayeh, M., Zarei, M., and Batelaan, O., 2022. A new approach to quantification of groundwater resource stress. Journal of Hydrology: Regional Studies, 42, 101161.‏ doi:10.1016/j.ejrh.2022.101161
  • Tao, W., 2015. Cause analysis and prediction of the groundwater level in Jinghuiqu irrigation district. Journal of Geoscience and Environment Protection, 3 (2), 85. doi:10.4236/gep.2015.32014.
  • Taylor, R.G., et al., 2013. Ground water and climate change. Nature Climate Change, 3 (4), 322–329. doi:10.1038/NCLIMATE1744.
  • Tillack, A., et al., 2014. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sensing of Environment, 141, 52–63. doi:10.1016/j.rse.2013.10.018
  • Viña, A., et al., 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115 (12), 3468–3478. doi:10.1016/j.rse.2011.08.010.
  • Wu, W.Y., et al., 2020. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 11 (1), 1–9. doi:10.1038/s41467-020-17581-y.
  • Yagbasan, O., 2016. Impacts of climate change on groundwater recharge in Küçük Menderes River Basin in Western Turkey. Geodinamica Acta, 28 (3), 209–222. doi:10.1080/09853111.2015.1121802.
  • Zarei, M., 2016. Factors governing the impact of emerged salt diapirs on water resources. Groundwater, 54 (3), 354–362. doi:10.1111/gwat.12370.
  • Zarei, M. and Raeisi, E., 2010. Conceptual modelling of brine flow into aquifers adjacent to the Konarsiah salt diapir, Iran. Cave & Karst Science, 37 (2), 37–44.
  • Zhao, Z., et al., 2019. The effect of climatic and non-climatic factors on groundwater levels in the Jinghuiqu irrigation district of the Shaanxi province, China. Water, 11 (5), 956. doi:10.3390/w11050956.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.