3,061
Views
2
CrossRef citations to date
0
Altmetric
Special issue: Advances in Statistical Hydrology - Selected Contributions of STAHY 2021

Budyko-based approach for modelling water balance dynamics considering environmental change drivers in the Vistula River basin, Poland

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 655-669 | Received 16 May 2022, Accepted 25 Jan 2023, Published online: 04 Apr 2023

References

  • Abbaspour, K.C., Johnson, C.A., and van Genuchten, M.T., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3 (4), 1340–1352. doi:10.2113/3.4.1340
  • Abbaspour, K.C., et al., 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. Elsevier B.V. doi:10.1016/j.jhydrol.2015.03.027
  • Ballarin, A.S., et al., 2022. The impact of an open water balance assumption on understanding the factors controlling the long‐term streamflow components. Water Resources Research, 58 (10). American Geophysical Union (AGU). doi:10.1029/2022wr032413
  • Beven, K., 2001. Rainfall-runoff modelling: the primer. Sussex, England: John Wiley & Sons Inc.
  • Beven, K. and Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6 (3), 279–298. doi:10.1002/hyp.3360060305
  • Beven, K. and Binley, A., 2014. GLUE: 20 years on. Hydrological Processes, 28 (24), 5897–5918. doi:10.1002/hyp.10082
  • Bogdanowicz, E., Karamuz, E., and Romanowicz, R.J., 2021. Temporal changes in flow regime along the river Vistula. Water (Switzerland), 13 (20). doi:10.3390/w13202840
  • Budyko, M.I., 1974. Climate and Life. New York: Academic Press.
  • Chen, H., et al. 2020. New perspective about application of extended Budyko formula in arid irrigation district with shallow groundwater. Journal of Hydrology, 582, 124496. Elsevier. doi:10.1016/j.jhydrol.2019.124496
  • Chen, X., Alimohammadi, N., and Wang, D., 2013. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resources Research, 49 (9), 6067–6078. doi:10.1002/wrcr.20493
  • Cheng, S., et al., 2021. An analytical baseflow coefficient curve for depicting the spatial variability of mean annual catchment baseflow. Water Resources Research, 57 (8). John Wiley and Sons Inc. doi:10.1029/2020WR029529
  • Choudhury, B.J., 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216 (1–2), 99–110. doi:10.1016/S0022-1694(98)00293-5
  • Dams, J., et al., 2015. Multi-model approach to assess the impact of climate change on runoff. Journal of Hydrology, 529, 1601–1616. Elsevier B.V. doi:10.1016/j.jhydrol.2015.08.023
  • Du, C., et al., 2016. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions. Hydrology and Earth System Sciences, 20 (1), 393–409. doi:10.5194/hess-20-393-2016
  • Eagleson, P., 1978. Introduction to water balance dynamics. Water Resources Research, 14 (5), 705–712. doi:10.1029/WR014i005p00705
  • Fan, Y., 2019. Are catchments leaky? Wiley Interdisciplinary Reviews Water, 1386, 1–25. doi:10.1002/wat2.1386
  • Fu, B.P., 1981. On the calculation of the evaporation from land surface (in Chinese). Science Atmospheric Sinica, 5, 23–31.
  • Gao, P., et al., 2017. Use of double mass curves in hydrologic benefit evaluations. Hydrological Processes, 31 (26), 4639–4646. doi:10.1002/hyp.11377
  • Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration from ambient air temperature. Paper - American Society Agricultural Engineering, 1 (2), 96–99.
  • Jaiswal, R.K., Lohani, A.K., and Tiwari, H.L., 2015. Statistical analysis for change detection and trend assessment in climatological parameters. Environmental Processes, 2 (4), 729–749. doi:10.1007/s40710-015-0105-3
  • Karamuz, E., et al., 2021. Is it a drought or only a fluctuation in precipitation patterns ?— drought reconnaissance in Poland. Water, 13 (6), 807. doi:10.3390/w13060807
  • Kendall, M.G., 1955. Rank correlation methods. Griffin, London.
  • Krajewski, A., et al., 2021. An attempt to decompose the impact of land use and climate change on annual runoff in a small agricultural catchment. Water Resources Management, 35 (3), 881–896. Water Resources Management. doi:10.1007/s11269-020-02752-9
  • Kubiak-Wójcicka, K., 2020. Variability of air temperature, precipitation and outflows in the Vistula Basin (Poland). Resources, 9 (9), 103. doi:10.3390/RESOURCES9090103
  • Li, D., et al., 2013. Vegetation control on water and energy balance within the Budyko framework. Water Resources Research, 49 (2), 1–8. doi:10.1002/wrcr.20107
  • Liu, B., et al., 2016. Spatiotemporal characteristics of groundwater drought and its response to meteorological drought in jiangsu province, China. Water (Switzerland). doi:10.3390/w8110480
  • Liu, J., et al., 2018. Hydrological effects of climate variability and vegetation dynamics on annual fluvial water balance in global large river basins. Hydrology and Earth System Sciences, 22 (7), 4047–4060. doi:10.5194/hess-22-4047-2018
  • Loon, A.F., et al., 2016. Drought in the Anthropocene. Nature Geoscience, 9 (2), Nature Publishing Group, 89–91. doi:10.1038/ngeo2646
  • Lv, X., et al., 2019. The effects of climate and catchment characteristic change on streamflow in a typical tributary of the Yellow River. Scientific Reports, 9 (1), 1–10. doi:10.1038/s41598-019-51115-x
  • Majewski, W., 2013. General characteristics of the Vistula and its basin. Acta Energetica, 2 (15), 6–15. doi:10.12736/.2300-3022.2013201
  • Majewski, W., 2018. Vistula river, its characteristics and management. International Journal of Hydrology, 2 (4), 493–496. doi:10.15406/ijh.2018.02.00116
  • Mann, H.B., 1945. Nonparametric tests against trend. Econometrica, 3, 245–259.
  • Mezentsev, V.S., 1955. More on the calculation of average total evaporation. Meteorology Gidrol, 5, 24–26.
  • Mianabadi, A., Davary, K., and Pourreza-bilondi, M. 2020. Budyko framework; towards non-steady state conditions. Journal of Hydrology, 588, 125089. Elsevier. doi:10.1016/j.jhydrol.2020.125089
  • Milly, P.C.D. and Dunne, K.A., 2002. Macroscale water fluxes: 2. Water and energy supply control of their interannual variability. Water Resources Research, 38 (10), 24-24–9. doi:10.1029/2001wr000760
  • Moges, E., et al., 2021. Review: sources of hydrological model uncertainties and advances in their analysis. Water (Switzerland), 13 (1), 1–23. doi:10.3390/w13010028
  • Moriasi, D.N., et al., 2015. Hydrologic and water quality models: performance measures and evaluation criteria. Transactions ASABE, 58 (6), 1763–1785. doi:10.13031/trans.58.10715
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models’ part I - a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Pettitt, A.N., 1979. A non-parametric to the approach problem. Applied Statistics, 28 (2), 126–135. doi:10.2307/2346729
  • Pike, J.G., 1964. The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology, 2 (2), 116–123. doi:10.1016/0022-1694(64
  • Potter, N.J., et al., 2005. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resources Research, 41 (6), 1–11. doi:10.1029/2004WR003697
  • Romanowicz, R.J., Beven, K.J., and Tawn, J.A., February 1994. Evaluation of predictive uncertainty in nonlinear hydrological models using a Bayesian approach. Statistics for the Environment, 2, 297–317.
  • SCS, 1972. National engineering handbook. Section 4, Hydrology, U.S. Government Printing Office, Washington, D.C.
  • Senbeta, T.B. and Romanowicz, R.J., 2021. The role of climate change and human interventions in affecting watershed runoff responses. Hydrological Processes, 12 (35). doi:10.1002/hyp.14448
  • Sun, Y., et al., 2014. Exploring the spatial variability of contributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods. Journal of Hydrology, 508, 170–180. Elsevier B.V. doi:10.1016/j.jhydrol.2013.11.004
  • Tekleab, S., et al., 2011. Water balance modeling of upper Blue Nile catchments using a top-down approach. Hydrology and Earth System Sciences, 15 (7), 2179–2193. doi:10.5194/hess-15-2179-2011
  • Thomas, H.A., 1981. Improved methods for national water assessment, water resources contract: WR15249270. Harvard Water Resource Group. doi:10.3133/70046351
  • Tomer, M.D. and Schilling, K.E., 2009. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. Journal of Hydrology, 376 (1–2), 24–33. Elsevier B.V. doi:10.1016/j.jhydrol.2009.07.029
  • Wang, D., 2012. Evaluating interannual water storage changes at water-sheds in Illinois based on long-term soil moisture and groundwater leveldata. Water Resources Research, 48 (3), W03502. doi:10.1029/2011WR010759
  • Wang, D. and Tang, Y., 2014. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophysical Research Letters, 41 (April), 4569–4577. doi:10.1002/2014GL060509
  • Wang, T., et al., 2009. On the role of groundwater and soil texture in the regional water balance: an investigation of the Nebraska Sand Hills, USA. Water Resources Research, 45 (10), 1–13. doi:10.1029/2009WR007733
  • Wrzesinski, D. and Sobkowiak, L., 2020. Transformation of the flow regime of a large allochthonous river in central Europe-an example of the Vistula River in Poland. Water (Switzerland), 12 (2), 1–20. doi:10.3390/w12020507
  • Wu, C., et al., 2017. Modeling water balance using the Budyko framework over variable timescales under diverse climates. Hydrology and Earth System Sciences, Discussion. https://hess.copernicus.org/preprints/hess-2017-441/ [Accessed 10 February 2022].
  • Wu, J., et al., 2017. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. Journal of Hydrology, 545, 263–275. Elsevier B.V. doi:10.1016/j.jhydrol.2016.12.050
  • Yang, H., et al., 2008. New analytical derivation of the mean annual water-energy balance equation. Water Resources Research, 44 (3), 1–9. doi:10.1029/2007WR006135
  • Yao, L., Sankarasubramanian, A., and Wang, D., 2021. Climatic and landscape controls on long-term baseflow. Water Resources Research, 57 (6). Blackwell Publishing Ltd. doi:10.1029/2020WR029284
  • Ye, X., et al., 2013. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the poyang lake catchment, China. Journal of Hydrology, 494, 83–95. Elsevier B.V. doi:10.1016/j.jhydrol.2013.04.036
  • Zakizadeh, H.R., Ahmadi, H., and Zehtabiyan, G.R., 2021. Impact of climate change on surface runoff: a case study of the Darabad River, northeast of Iran. Journal of Water, and Climate Change 12 (1), 82–99. doi:10.2166/wcc.2020.089
  • Zeng, R. and Cai, X. 2015. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors. Advances in Water Resources, 79, 51–60. Elsevier Ltd. doi:10.1016/j.advwatres.2015.02.008
  • Zhang, L., et al., 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40 (2), 1–14. doi:10.1029/2003WR002710
  • Zhang, L., Dawes, W.R., and Walker, G.R., 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37 (3), 701–708. doi:10.1029/2000WR900325
  • Zhang, L., et al., 2008. Water balance modeling over variable time scales based on the Budyko framework - model development and testing. Journal of Hydrology, 360 (1–4), 117–131. Elsevier. doi:10.1016/j.jhydrol.2008.07.021
  • Zhang, S., et al., 2016. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophysical Research Letters, 43 (3), 1140–1148. Blackwell Publishing Ltd. doi:10.1002/2015GL066952
  • Zheng, H., et al., 2009. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resources Research, 45 (7), 1–9. doi:10.1029/2007WR006665
  • Zhou, G., et al., 2015. Global pattern for the effect of climate and land cover on water yield. Nature Communications, 6, Nature Publishing Group, 1–9. doi:10.1038/ncomms6918