380
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a new agro-meteorological drought index (SPAEI-Agro) in a data-scarce region

ORCID Icon, ORCID Icon, &
Pages 1301-1322 | Received 14 Jun 2022, Accepted 17 Mar 2023, Published online: 15 Jun 2023

References

  • Aadhar, S. and Mishra, V., 2017. High-resolution near real-time drought monitoring in South Asia. Scientific Data, 4 (1), 170145. doi:10.1038/sdata.2017.145.
  • Abbaspour, K.C., et al., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333 (2–4), 413–430. doi:10.1016/j.jhydrol.2006.09.014.
  • Abbaspour, K.C., et al., 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. doi:10.1016/j.jhydrol.2015.03.027
  • Abbaspour, K.C., Vaghefi, S.A., and Srinivasan, R., 2018. A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference. Water, 10 (1), 6. doi:10.3390/w10010006.
  • Abdulkareem, J.H., et al., 2018. Review of studies on hydrological modelling in Malaysia. Modeling Earth Systems and Environment, 4 (4), 1577–1605. doi:10.1007/s40808-018-0509-y.
  • Agnew, C., 1993. World atlas of desertification: United Nations environment programme. London: Edward Arnold. 1992, 69.
  • Ahmad, M.I., Sinclair, C.D., and Werritty, A., 1988. Log-logistic flood frequency analysis. Journal of Hydrology, 98 (3–4), 205–224. doi:10.1016/0022-1694(88)90015-7.
  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716–723. doi:10.1109/TAC.1974.1100705.
  • Allen, R.G., et al., 1998. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, 300 (9), D05109.
  • Arnold, J.G., et al., 1998. Large area hydrologic modeling and assessment part I: model development1. Journal of the American Water Resources Association, 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x.
  • Arnold, J.G. et al., 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55 (4), 1491–1508. doi:10.13031/2013.42256.
  • Asokan, S.M., Jarsjö, J., and Destouni, G., 2010. Vapor flux by evapotranspiration: effects of changes in climate, land use, and water use. Journal of Geophysical Research: Atmospheres, 115 (D24). doi:10.1029/2010JD014417.
  • Beguería, S., et al., 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34 (10), 3001–3023. doi:10.1002/joc.3887.
  • Bhardwaj, K., et al., 2020. Propagation of meteorological to hydrological droughts in India. Journal of Geophysical Research: Atmospheres, 125 (22), e2020JD033455. doi:10.1029/2020JD033455.
  • Branisavljević, N., et al., 2009. Hydro meteorological data quality assurance and improvement. Journal of Serbian Society for Computational Mechanics, 3 (1), 228–249. Available from: https://grafar.grf.bg.ac.rs/handle/123456789/223.
  • Budyko, M.I., 1974. Climate and life. Academic Press.
  • Chang, T.J., 1991. Investigation of precipitation droughts by use of Kriging method. Journal of Irrigation and Drainage Engineering, 117 (6), 935–943. doi:10.1061/(ASCE)07339437(1991)117:6(935).
  • Clark, M.P., et al., 2015. A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51 (4), 2498–2514. doi:10.1002/2015WR017198.
  • Crausbay, S.D. et al., 2017. Defining ecological drought for the twenty-first century. Bulletin of the American Meteorological Society, 98 (12), 2543–2550. doi:10.1175/BAMS-D-16-0292.1.
  • Dai, A., 2011. Drought under global warming: a review. WIREs Climate Change, 2 (1), 45–65. doi:10.1002/wcc.81.
  • Djebou, S. and Clement, D., 2019. Streamflow drought interpreted using SWAT model simulations of past and future hydrologic scenarios: application to Neches and Trinity River Basins, Texas. Journal of Hydrologic Engineering, 24 (9), 05019024. doi:10.1061/(ASCE)HE.1943-5584.0001827.
  • Eckhardt, K. and Arnold, J.G., 2001. Automatic calibration of a distributed catchment model. Journal of Hydrology, 251 (1–2), 103–109. doi:10.1016/S0022-1694(01)00429-2.
  • Eltahir, E.A., 1992. Drought frequency analysis of annual rainfall series in central and western Sudan. Hydrological Sciences Journal, 37 (3), 185–199. doi:10.1080/02626669209492581.
  • Esmaeili-Gisavandani, H., et al., 2021. Improving the performance of rainfall-runoff models using the gene expression programming approach. Journal of Water and Climate Change, 12 (7), 3308–3329. doi:10.2166/wcc.2021.064.
  • Eum, H.-I., Gupta, A., and Dibike, Y., 2020. Effects of univariate and multivariate statistical downscaling methods on climatic and hydrologic indicators for Alberta, Canada. Journal of Hydrology, 588, 125065. doi:10.1016/j.jhydrol.2020.125065
  • Faramarzi, M., et al., 2009. Modelling blue and green water resources availability in Iran. Hydrological Processes, 23 (3), 486–501. doi:10.1002/hyp.7160.
  • Gassman, P.W., Sadeghi, A.M., and Srinivasan, R., 2014. Applications of the SWAT model special section: overview and insights. Journal of Environmental Quality, 43 (1), 1–8. doi:10.2134/jeq2013.11.0466.
  • Gaur, A., et al., 2007. Implications of drought and water regulation in the Krishna basin, India. Water Resources Development, 23 (4), 583–594. doi:10.1080/07900620701488513.
  • Gong, Y., et al., 2012. A comparison of single- and multi-gauge based calibrations for hydrological modeling of the Upper Daning River Watershed in China’s Three Gorges Reservoir Region. Hydrology Research, 43 (6), 822–832. doi:10.2166/nh.2012.021.
  • Goyal, M.K., et al., 2018. Comparative assessment of SWAT model performance in two distinct catchments under various DEM scenarios of varying resolution, sources and resampling methods. Water Resources Management, 32 (2), 805–825. doi:10.1007/s11269-017-1840-1.
  • Ha, L.T., et al., 2017. SWAT-CUP for calibration of spatially distributed hydrological processes and ecosystem services in a Vietnamese River Basin using remote sensing. Hydrology and Earth System Sciences Discuss, 1–35. doi:10.5194/hess-2017-251.
  • Haan, C.T., 1989. Parametric uncertainty in hydrologic modeling. Transactions of the ASAE, 32 (1), 0137–0146. doi:10.13031/2013.30973.
  • Haan, C.T., et al., 1995. Statistical procedure for evaluating hydrologic/water quality models. Transactions of the ASAE, 38 (3), 725–733. doi:10.13031/2013.27886.
  • Hamel, P. and Guswa, A.J., 2015. Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina. Hydrology and Earth System Sciences, 19 (2), 839–853. doi:10.5194/hess-19-839-2015.
  • Hao, Z., AghaKouchak, A., and Phillips, T.J., Aug 1 2013. Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 8 (3), 034014. doi:10.1088/1748-9326/8/3/034014.
  • Hargreaves, G.H. and Samani, Z.A., 1982. Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108 (3), 225–230. doi:10.1061/JRCEA4.0001390.
  • Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1 (2), 96–99. doi:10.13031/2013.26773.
  • Harmel, R.D., Smith, P.K., and Migliaccio, K.W., 2010. Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation. Transactions of the ASABE, 53 (1), 55–63. doi:10.13031/2013.29502.
  • Hellwig, J., et al., 2020. Large-scale assessment of delayed groundwater responses to drought. Water Resources Research, 56 (2), e2019WR025441. doi:10.1029/2019WR025441.
  • Homdee, T., Pongput, K., and Kanae, S., 2016. A comparative performance analysis of three standardized climatic drought indices in the Chi River basin, Thailand. Agriculture and Natural Resources, 50, 211–219. doi:10.1016/j.anres.2016.02.002
  • Hughes, J.D., Petrone, K.C., and Silberstein, R.P., 2012. Drought, groundwater storage and stream flow decline in southwestern Australia. Geophysical Research Letters, 39 (3). doi:10.1029/2011GL050797.
  • Jacobsen, S.E., Jensen, C.R., and Liu, F., 2012. Improving crop production in the arid mediterranean climate. Field Crops Research, 128, 34–47. doi:10.1016/j.fcr.2011.12.001
  • Kaffas, K., Hrissanthou, V., and Sevastas, S., 2018. Modeling hydromorphological processes in a mountainous basin using a composite mathematical model and ArcSWAT. CATENA, 162, 108–129. doi:10.1016/j.catena.2017.11.017
  • Kendall, M.G., 1948. Rank correlation methods. Oxford, England: Rank correlation methods. Griffin.
  • Kumari, P., et al., 2022. Assessment of meteorological drought using standardized precipitation evapotranspiration index—hyderabad case study. In: S. Kolathayar, A. Mondal, and S.C. Chian, eds. Climate change and water security, lecture notes in civil engineering. Singapore: Springer, 243–252. doi:10.1007/978-981-16-5501-2_20.
  • Li, Z., Xu, Z., and Li, Z., 2011. Performance of WASMOD and SWAT on hydrological simulation in Yingluoxia watershed in northwest of China. Hydrological Processes, 25 (13), 2001–2008. doi:10.1002/hyp.7944.
  • Liu, M., et al., 2017. A new drought index that considers the joint effects of climate and land surface change. Water Resources Research, 53 (4), 3262–3278. doi:10.1002/2016WR020178.
  • Mallya, G., et al., 2016. Trends and variability of droughts over the Indian monsoon region. Weather and Climate Extremes, 12, 43–68. doi:10.1016/j.wace.2016.01.002
  • McKee, T.B., Doesken, N.J., and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In Proceedings of thehaan 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179–183). 17-22 January 1993, Anaheim, California.
  • McMillan, H.K., Westerberg, I.K., and Krueger, T., 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5 (6), e1319. doi:10.1002/wat2.1319.
  • Mondal, A. and Mujumdar, P.P., 2012. On the basin-scale detection and attribution of human-induced climate change in monsoon precipitation and streamflow. Water Resources Research, 48 (10). doi:10.1029/2011WR011468.
  • Monish, N.T. and Rehana, S., 2019. Suitability of distributions for standard precipitation and evapotranspiration index over meteorologically homogeneous zones of India. Journal of Earth System Science, 129 (1), 25. doi:10.1007/s12040-019-1271-x.
  • Monteith, J.L., 1965. Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205–234.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153.
  • Mueller, B., et al., 2011. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 38 (6). doi:10.1029/2010GL046230.
  • Nalbantis, I. and Tsakiris, G., 2009. Assessment of hydrological drought revisited. Water Resources Management, 23 (5), 881–897. doi:10.1007/s11269-008-9305-1.
  • Nam, W.-H., et al., 2012. A decision support system for agricultural drought management using risk assessment. Paddy and Water Environment, 10 (3), 197–207. doi:10.1007/s10333-012-0329-z.
  • Narsimlu, B., et al., 2015. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environmental Processes, 2 (1), 79–95. doi:10.1007/s40710-015-0064-8.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • Neitsch, S.L., et al., 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
  • Odusanya, A.E., et al., 2019. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrology and Earth System Sciences, 23 (2), 1113–1144. doi:10.5194/hess-23-1113-2019.
  • Oloruntade, A.J., et al., 2017. Analysis of meteorological and hydrological droughts in the Niger-South Basin, Nigeria. Global and Planetary Change, 155, 225–233. doi:10.1016/j.gloplacha.2017.05.002
  • Pathak, A.A., Dodamani, B.M., and Dodamani, B.M., 2016. Comparison of two hydrological drought indices. Perspectives in Science, 8, 626–628. doi:10.1016/j.pisc.2016.06.039
  • Perrone, D., 2020. Groundwater overreliance leaves farmers and households high and dry. One Earth, 2 (3), 214–217. doi:10.1016/j.oneear.2020.03.001.
  • Priestley, C.H.B. and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100 (2), 81–92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2OTAOSH>2.3.CO;2.
  • Raffensperger, J.P., et al., 2017. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds (No. 2017–5034), scientific investigations report. U.S. Geological Survey. doi:10.3133/sir20175034.
  • Rehana, S. and Monish, N.T., 2020. Characterization of regional drought over water and energy limited zones of India using potential and actual evapotranspiration. Earth and Space Science, 7 (10), e2020EA001264. doi:10.1029/2020EA001264.
  • Rehana, S., Naidu, G.S., and Monish, N.T., 2020. Spatiotemporal variations of precipitation and temperatures under CORDEX climate change projections: a case study of Krishna River Basin, India. In: P. Singh, R.P. Singh, and V. Srivastava, eds. Contemporary environmental issues and challenges in Era of climate change. Singapore: Springer, 157–170. doi:10.1007/978-981-32-9595-7_8.
  • Rehana, S. and Sireesha Naidu, G., 2021. Development of hydro-meteorological drought index under climate change – semi-arid river basin of Peninsular India. Journal of Hydrology, 594, 125973. doi:10.1016/j.jhydrol.2021.125973
  • Ruan, H., et al., 2017. Runoff simulation by SWAT model using high-resolution gridded precipitation in the Upper Heihe River Basin, Northeastern Tibetan Plateau. Water, 9 (11), 866. doi:10.3390/w9110866.
  • Sepulcre-Canto, G., Horion, S.M.A.F., Singleton, A., Carrao, H. and Vogt, J., 2012. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Natural Hazards and Earth System Sciences, 12(11), 3519–3531. doi: 10.5194/nhess-12-3519-2012.
  • Seshasai, M., et al., 2016. Agricultural drought: assessment & monitoirng. Mausam, 67. doi:10.54302/mausam.v67i1.1155.
  • Sheng, Y. and Hashino, M., 2007. Probability distribution of annual, seasonal and monthly precipitation in Japan. Hydrological Sciences Journal, 52 (5), 863–877. doi:10.1623/hysj.52.5.863.
  • Shokouhifar, Y., et al., 2022. Evaluation of climate change effects on flood frequency in arid and semi-arid basins. Water Supply, 22 (8), 6740–6755. doi:10.2166/ws.2022.271.
  • Shukla, S. and Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35 (2). doi:10.1029/2007GL032487.
  • Singh, S.K., et al., 2019b. Towards baseflow index characterisation at national scale in New Zealand. Journal of Hydrology, 568, 646–657. doi:10.1016/j.jhydrol.2018.11.025
  • Singh, S.K., 2020. Hydrological model parameters space during calibration. International Journal of Hydrology Science and Technology, 10 (1), 52–71. doi:10.1504/IJHST.2020.104987.
  • Singh, V., et al., 2013. Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Current Science, 104, 1187–1199.
  • Singh, G.R., Dhanya, C.T., and Chakravorty, A., 2021. A Robust drought index accounting changing precipitation characteristics. Water Resources Research, 57 (7), e2020WR029496. doi:10.1029/2020WR029496.
  • Srivastava, A., et al., 2017. Evaluation of variable-infiltration capacity model and MODIS-terra satellite-derived grid-scale evapotranspiration estimates in a River Basin with tropical monsoon-type climatology. Journal of Irrigation and Drainage Engineering, 143 (8), 04017028. doi:10.1061/(ASCE)IR.1943-4774.0001199.
  • Svoboda, M., et al., 2002. The drought monitor. Bulletin of the American Meteorological Society, 83 (8), 1181–1190. doi:10.1175/1520-0477-83.8.1181.
  • Tang, F.F., Xu, H.S., and Xu, Z.X., 2012. Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting. Procedia Environmental Sciences, 18th Biennial ISEM Conference on Ecological Modelling for Global Change and Coupled Human and Natural System, 13, 1760–1770. doi:10.1016/j.proenv.2012.01.170.
  • Thiemig, V., et al., 2013. Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. Journal of Hydrology, 499, 324–338. doi:10.1016/j.jhydrol.2013.07.012
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38 (1), 55–94. doi:10.2307/210739.
  • Tirivarombo, S., Osupile, D., and Eliasson, P., 2018. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Physics and Chemistry of the Earth, Parts A/B/C, 106, 1–10. doi:10.1016/j.pce.2018.07.001
  • Van Lanen, H.A.J., et al., 2013. Hydrological drought across the world: impact of climate and physical catchment structure. Hydrology and Earth System Sciences, 17 (5), 1715–1732. doi:10.5194/hess-17-1715-2013.
  • Vicente-Serrano, S.M., et al., 2015. Spatio-temporal variability of droughts in Bolivia: 1955–2012. International Journal of Climatology, 35 (10), 3024–3040. doi:10.1002/joc.4190.
  • Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23 (7), 1696–1718. doi:10.1175/2009JCLI2909.1.
  • Vrugt, J.A., et al., 2008. Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research, 44 (12). doi: 10.1029/2007WR006720.
  • Wilhite, D.A. and Glantz, M.H., 1985. Understanding: the drought phenomenon: the role of definitions. Water International, 10 (3), 111–120. doi:10.1080/02508068508686328.
  • Xu, K., et al., 2018. Comparative analysis of meteorological and hydrological drought over the Pearl River basin in southern China. Hydrology Research, 50 (1), 301–318. doi:10.2166/nh.2018.178.
  • Yang, Y., et al., 2017. Lags in hydrologic recovery following an extreme drought: assessing the roles of climate and catchment characteristics. Water Resources Research, 53 (6), 4821–4837. doi:10.1002/2017WR020683.
  • Yevjevich, 1967. An objective approach to definitions and investigations of continental hydrologic droughts. Journal of Hydrology, 7, 353. doi:10.1016/0022-1694(69)90110-3
  • Yu, M., et al., 2018. Analysis of drought propagation using hydrometeorological data: from meteorological drought to agricultural drought. Journal of Korea Water Resources Association, 51, 195–205. doi:10.3741/JKWRA.2018.51.3.195
  • Zhang, G., Gan, T.Y., and Su, X., 2021. Twenty-1st century drought analysis across China under climate change. Climate Dynamics. doi:10.1007/s00382-021-06064-5.
  • Zhang, L., et al., 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40 (2). doi:10.1029/2003WR002710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.