185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Streamflow–concentration relationships of surface water in the Choapa basin: historical analysis and projections under climate change

, ORCID Icon, , , & ORCID Icon
Pages 1250-1263 | Received 03 Aug 2022, Accepted 03 Apr 2023, Published online: 13 Jun 2023

References

  • Ackerer, J., et al., 2020. Determining how critical zone structure constrains hydrogeochemical behavior of watersheds: learning from an elevation gradient in California’s Sierra Nevada. Frontiers in Water, 2, 23. doi:10.3389/frwa.2020.00023
  • Azócar, G.F. and Brenning, A., 2008. Intervenciones en glaciares rocosos en Minera Los Pelambres, Región de Coquimbo, Chile. Unpublished Report. Waterloo: University of Waterloo.
  • Azócar, G.F. and Brenning, A., 2010. Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33°S). Permafrost and Periglacial Processes, 21 (1), 42–53. doi:10.1002/ppp.669
  • Barrera, C., et al., 2020. Streamflow elasticity, in a context of climate change, in arid Andean watersheds of north-central Chile. Hydrological Sciences Journal, 65 (10), 1707–1719. doi:10.1080/02626667.2020.1770764
  • Bonta, J., 2005. Changes in concentration-discharge regression parameters due to coal mining and reclamation activities. Hydrological Sciences Journal, 50 (1), 155–173. doi:10.1623/hysj.50.1.155.56335
  • Brenning, A. and Azócar, G.F., 2010. Minería y glaciares rocosos: impactos ambientales, antecedentes políticos y legales, y perspectivas futuras. Revista de Geografía Norte Grande, 47, 143–158. doi:10.4067/S0718-34022010000300008
  • Byrne, P., et al., 2020. Critical shifts in trace metal transport and remediation performance under future low river flows. Environmentqal Science and Technology, 54 (24), 15742–15750. doi:10.1021/acs.est.0c04016
  • CCG, 2013. Análisis de la Vulnerabilidad Futura de las Cuencas del Río Choapa y Estero Pupío. Centro de Cambio Global. 32. Available from: https://cambioglobal.uc.cl/images/proyectos/Documento_25_Vulnerabilidad-Cuenca-rio-Choapa-Pupo.pdf [ Accessed June 2021].
  • Cidu, R. and Frau, F., 2009. Distribution of trace elements in filtered and non filtered aqueous fractions: insights from rivers and streams of Sardinia (Italy). Applied Geochemistry, 24 (4), 611–623. doi:10.1016/j.apgeochem.2008.12.013
  • CONAMA, 2004. Res. Ex. N°: 038 Califica ambientalmente el Proyecto Integral de Desarrollo presentado por Minera Los Pelambres. Comisión Nacional de Medio Ambiente. Available from: https://seia.sea.gob.cl/archivos/EIA/2013102801/EIA_6243_DOC_2128763369_-1.pdf [ Accessed Dec 2020].
  • Demaria, E., et al., 2013. Climate change impacts on an alpine watershed in Chile: do new model projections change the story? Journal of Hydrology, 502, 128–138. doi:10.1016/j.jhydrol.2013.08.027
  • DGA, 2004. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad, cuenca del río Choapa. Dirección General de Aguas. 131. Available from: https://mma.gob.cl/diagnostico-y-clasificacion-de-cursos-y-cuerpos-de-agua-segun-objetivos-de-calidad/ [ Accessed March 2020].
  • DGA, 2017. Análisis para el desarrollo de un Plan de GIRH en la cuenca del Choapa. Dirección General de Aguas. 57. Available from: https://snia.mop.gob.cl/sad/ADM5793v2.pdf [ Accessed May 2020].
  • D’Orazio, M., 2018. Package univOutl: detection of univariate outliers. Available from: https://cran.r-project.org/web/packages/univOutl/univOutl.pdf. [ Accessed Nov 2020].
  • Flores, M., et al., 2016. Surface water quality in a sulfide mineral-rich arid zone in North-Central Chile: learning from a complex past, addressing an uncertain future. Hydrological Processes, 31 (3), 498–513. doi:10.1002/hyp.11086
  • Garreaud, R., et al., 2019. The Central Chile Mega Drought (2010–2018): a climate dynamics perspective. International Journal of Climatology, 40 (1), 421–439. doi:10.1002/joc.6219
  • Garreaud, R.D., et al., 2017. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrology and Earth System Science, 21 (12), 6307–6327. doi:10.5194/hess-21-6307-2017
  • Godsey, S.E., Kirchner, J.W., and Clow, D.W., 2009. Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes, 23 (13), 1844–1864. doi:10.1002/hyp.7315
  • Herndon, E.M., et al., 2015. Landscape heterogeneity drives contrasting concentration–discharge relationships in shale headwater catchments. Hydrology and Earth System Sciences, 19 (8), 3333–3347. doi:10.5194/hess-19-3333-2015
  • Hunsaker, C.T. and Johnson, D.W., 2017. Concentration-discharge relationships in headwater streams of the Sierra Nevada, California. Water Resources Research, 53 (9), 7869–7884. doi:10.1002/2016WR019693
  • INN, 1987. Norma Chilena Oficial NCh 1333/78, modificada en 1987. Requisitos de calidad del agua para diferentes usos. Instituto Nacional de Normalización. Santiago, Chile. Available from: https://ciperchile.cl/pdfs/11-2013/norovirus/NCh1333-1978_Mod-1987.pdf [ Accessed April 2020].
  • INN, 2005. Norma Chilena Oficial, Requisitos de Calidad de agua para agua potable (NCh409.Of2005). Instituto Nacional de Normalización. Santiago, Chile. Available from: https://ciperchile.cl/pdfs/11-2013/norovirus/NCh409.pdf. [ Accessed April 2020].
  • Li, L., et al., 2017. Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior. Water Resources Research, 53 (3), 2346–2367. doi:10.1002/2016WR018935
  • Li, L., 2019. Watershed reactive transport. Reviews in Mineralogy and Geochemistry, 13 (85), 381–418.
  • Li, L., et al., 2021. Toward catchment hydro-biogeochemical theories. WIREs Water, 8 (1), e1495. doi:10.1002/wat2.1495
  • Ministerio de Minería, w/o year. Minería Abierta-Maps. Available from: http://www.mineriaabierta.cl/mapa. [Accessed December 2021]
  • MMA, 2016. Tercera comunicación nacional de Chile ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. Ministerio del Medio Ambiente. Available from: https://mma.gob.cl/wp-content/uploads/2017/12/TCN-2016b1.pdf [ Accessed Oct 2021].
  • MMA, 2017. Plan de Acción Nacional de Cambio Climático 2017-2022. División de Cambio Climático del Ministerio del Medio Ambiente. Available from: https://mma.gob.cl/wp-content/uploads/2018/06/PANCCv3-19-10-baja.pdf [ Accessed July 2021].
  • MMA, 2018. Tercer informe bienal de actualización de Chile sobre Cambio Climático 2018. Ministerio de Medio Ambiente. Available from: https://mma.gob.cl/wp-content/uploads/2018/12/3rd-BUR-Chile-SPanish.pdf [ Accessed July 2021].
  • Monnier, S. and Kinnard, C., 2013. Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar. Annals of Glaciology, 54 (64), 61–72. doi:10.3189/2013AoG64A107
  • Montserrat, S., et al., 2022. Hidrología y química de aguas en la cuenca alta del río Maipo. In: R. Ascanio, ed. Ecosistemas de montaña de la cuenca alta del río Mapocho. Santiago, Chile: AngloAmerican-Centro Clapes, 26–45. Available from: https://b8c408.a2cdn1.secureserver.net/wp-content/uploads/2021/12/CAP-1-1.pdf
  • MOP, 2021. Decreto MOP N°2: declara Zona de Escasez Hídrica a la región de Coquimbo. Ministerio de Obras Públicas, Gobierno de Chile. Available from: https://dga.mop.gob.cl/administracionrecursoshidricos/decretosZonasEscasez/Documents/DTR_2_2021.pdf [ Accessed March 2022].
  • Muck, P., 2012. Chile: national adaptation plans to climate change. Available from: http://www.oecd.org/env/cc/50426634.pdf [ Accessed Oct 2021].
  • Musolff, A., et al., 2015. Catchment control son solute export. Advances in Water Resources, 86, 133–146. doi:10.1016/j.advwatres.2015.09.026
  • Nauditt, A., et al., 2017a. Conceptual modelling to assess the influence of hydro-climatic variability on runoff processes in data scarce semi-arid Andean catchments. Hydrological Sciences Journal, 62 (4), 513–532. doi:10.1080/02626667.2016.1240870
  • Nauditt, A., et al., 2017b. Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile. Environmental Monitoring and Assessment, 189 (9), 440–457. doi:10.1007/s10661-017-6149-2
  • Núñez, J. and Verbist, K., 2018. Atlas de Sequía de América Latina y el Caribe. UNESCO and CAZALAC. Available from: http://dgf.uchile.cl/rene/PUBS/AtlasSequia_latam_UNESCO.pdf [ Accessed Dec 2020].
  • Oyarzun, R., et al., 2006. The As-contaminated Elqui river Basin: a long lasting perspective (1975–1995) covering the initiation and development of Au-Cu-As mining in the high Andes of northern Chile. Environmental Geochemistry and Health, 28 (5), 431–443. doi:10.1007/s10653-006-9045-1
  • Parra, A., et al., 2011. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process. Environmental Monitoring and Assessment, 181 (1–4), 69–82. doi:10.1007/s10661-010-1814-8
  • Paskoff, R., 1993. Geomorfología de Chile semiárido. La Serena: Ediciones Universidad de La Serena, 321.
  • Peña-Guerrero, M.D., et al., 2020. Drought impacts on water quality and potential implications for agricultural production in the Maipo river basin, Central Chile. Hydrological Sciences Journal, 65 (6), 1005–1021. doi:10.1080/02626667.2020.1711911
  • Pohle, I., et al., 2021. A framework for assessing concentration-discharge catchment behavior from low-frequency water quality data. Water Resources Research, 57 (9), e2021WR029692. doi:10.1029/2021WR029692
  • PROMRRA, w/o year. Monitoreo de suelo agrícola, Región de Coquimbo. Available from: http://promus.prommra.cl/sup-historica/choapa/canela/sup-historica-choapa-2000.php [ Accessed December 2021].
  • R Core Team, 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rodriguez, M., et al., 2016. Estimating runoff from a glacierized catchment using natural tracers in the semi-arid Andes Cordillera. Hydrological Processes, 30 (20), 3609–3626. doi:10.1002/hyp.10973
  • Rose, L.A., Karwan, D.L., and Godsey, S.E., 2018. Concentration–discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales. Hydrological Processes, 32 (18), 2829–2844. doi:10.1002/hyp.13235
  • Salmon, C.D., et al., 2001. Hydrological controls on chemical exports from an undisturbed old-growth Chilean forest. Journal of Hydrology, 253 (1–4), 69–80. doi:10.1016/S0022-1694(01)00447-4
  • Schaffer, N., et al., 2019. Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Regional Environmental Change, 19 (5), 1263–1279. doi:10.1007/s10113-018-01459-3
  • SERNAGEOMIN, 2003. Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (CD-ROM, versión 1.0, 2003). Available from: http://www.ipgp.fr/~dechabal/Geol-millon.pdf [ Accessed Dec 2020].
  • Souvignet, M., et al., 2010. Statistical downscaling of precipitation and temperature in north‐central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrological Sciences Journal, 55 (1), 41–57. doi:10.1080/02626660903526045
  • Thompson, S.E., et al., 2011. Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research, 47 (10), W00J5. doi:10.1029/2010wr009605
  • Valois, R., et al., 2020. Groundwater level trends and recharge event characterization using historical observed data in semi-arid Chile. Hydrological Sciences Journal, 65 (4), 597–609. doi:10.1080/02626667.2020.1711912
  • Vicuña, S., et al., 2020. Informe Proyecto ARClim: recursos Hídricos. Centro de Cambio Global UC. Santiago. Available from: https://arclim.mma.gob.cl/media/informes_consolidados/11_RECURSOS_HIDRICOS_B.pdf [ Accessed July 2021].
  • Viviroli, D., et al., 2007. Mountains of the world, water towers for humanity: typology, mapping and global significance. Water Resources Research, 43 (7), WO7447. doi:10.1029/2006WR005653
  • Zarroca, M., et al., 2021. Natural acid rock drainage in alpine catchments: a side effect of climate warming. Science of the Total Environment, 778, 146070. doi:10.1016/j.scitotenv.2021.146070
  • Zegers, G., et al., 2021. An integrated modeling approach for mineral and metal transport in acidic rivers at high mountainous porphyry Cu systems. Journal of Hydrology, 602. doi:10.1016/j.jhydrol.2021.126718
  • Zhu, X., et al., 2018. Variations of trace elements under hydrological conditions in the Min River, Eastern Tibetian Plateau. Acta Geochimica, 37 (4), 509–518. doi:10.1007/s11631-018-0275-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.