433
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modelling the climate change impacts on river discharge and inundation extent in the Magdalena River basin – Colombia

ORCID Icon, , , , ORCID Icon, ORCID Icon, & show all
Pages 1286-1300 | Received 14 Sep 2022, Accepted 18 Apr 2023, Published online: 15 Jun 2023

References

  • Abebe, Y.A., et al., 2019. Flood risk management in Sint Maarten–A coupled agent-based and flood modelling method. Journal of Environmental Management, 248, 109317. doi:10.1016/j.jenvman.2019.109317.
  • Almagro, A., et al., 2020. Performance evaluation of Eta/HadGEM2-ES and Eta/MIROC5 precipitation simulations over Brazil. Atmospheric Research, 244, 105053. doi:10.1016/j.atmosres.2020.105053.
  • Almeida, R.M., et al., 2021. Climate change may impair electricity generation and economic viability of future Amazon hydropower. Global Environmental Change: Human and Policy Dimensions, 71, 102383. doi:10.1016/j.gloenvcha.2021.102383.
  • Álvarez‐Villa, O.D., Vélez, J.I., and Poveda, G., 2011. Improved long‐ term mean annual rainfall fields for Colombia. International Journal of Climatology, 31 (14), 2194–2212. doi:10.1002/joc.2232.
  • Angarita, H., et al., 2018. Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia. Hydrology and Earth System Sciences, 22 (5), 2839–2865. doi:10.5194/hess22-2839-2018.
  • Arboleda, P.F. and Rodríguez, E.A., 2019. Investigating climate and land use change scenarios in the Magdalena-Cauca Macrobasin, Colombia. E-proceedings of the 38th IAHR World Congress, 1–6 September. Panama City, Panama. doi:10.3850/38WC092019-1014
  • Arias, P.A., et al., 2020. Colombian climatology in CMIP5/CMIP6 models: persistent biases and improvements. Revista Facultad de Ingeniería Universidad de Antioquia. doi:10.17533/udea.redin.20210525.
  • Arora, N.K., 2019. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2 (2), 95–96. doi:10.1007/s42398-019-00078-w.
  • Arora, V.K., et al., 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters, 38 (5), 3–8. doi:10.1029/2010GL046270.
  • Aryal, A., Shrestha, S., and Babel, M.S., 2019. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology, 135 (1), 193–209. doi:10.1007/s00704-017-2359-3.
  • Avand, M., Moradi, H., and Ramazanzadeh, M., 2021. Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. Journal of Hydrology, 595, 125663. doi:10.1016/j.jhydrol.2020.125663
  • Barreto, M.C., et al., 2021. Spatio-temporal analysis of the hydrological response to land cover changes in the sub-basin of the Chicú river, Colombia. Heliyon, 7, e07358. doi:10.1016/j.heliyon.2021.e07358.
  • Bates, P.D., Horritt, M.S., and Fewtrell, T.J., 2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387 (1–2), 33–45. doi:10.1016/j.jhydrol.2010.03.027.
  • Bhandari, R., Kalra, A., and Kumar, S., 2020. Analyzing the effect of CMIP5 climate projections on streamflow within the Pajaro River Basin. Open Water J, 6 (1), 5.
  • Bravo, J.M., et al., 2014. Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin. Climatic Change, 127 (1), 27–41. doi:10.1007/s10584-013-0816-2.
  • Brêda, J.P.L.F., et al., 2020. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Climatic Change, 159 (4), 503–522. doi:10.1007/s10584-020-02667-9.
  • Camacho, L.A., Rodríguez, E., and Pinilla, G., 2008 . Modelación dinámica integrada de cantidad y calidad del agua del Canal del Dique y su sistema. XXIII Latinamerican Congress on Hydraulic (IARH)(Lagunar). Cartagena, Colombia.
  • Campo, G.N., et al., 2020. Avaliação do modelo MGB na bacia do Magdalena/Colômbia e de rompimento de dique durante o evento La Niña de 2011. II END - Encontro Nacional de Desastres da ABRHidro. 15-18 dezembro 2020. Available from: https://anais.abrhidro.org.br/job.php?Job=7349.
  • Chen, J., et al., 2013. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49 (7), 4187–4205. doi:10.1002/wrcr.20331.
  • Chou, S.C., et al., 2014a. Evaluation of the Eta simulations nested in three global climate models. American Journal of Climate Change, 3 (5), 438. doi:10.4236/ajcc.2014.35039.
  • Chou, S.C., et al., 2014b. Assessment of climate change over South America under RCP4.5 and 8.5 downscaling scenarios. The Journal of Climate Change, 3 (5), 512. doi:10.4236/ajcc.2014.35043.
  • Chou, S.C., et al., 2020. Ten-year seasonal climate reforecasts over South America using the Eta Regional Climate Model. Anais da Academia Brasileira de Ciências, 92. doi:10.1590/0001-3765202020181242.
  • Christensen, J.H., et al., 2007. Evaluating the performance and utility of regional climate models: the PRUDENCE project. Climatic Change, 81 (1), 1–6. doi:10.1007/s10584-006-9211-6.
  • Clerici, N., et al., 2019. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of the Total Environment, 685, 1181–1192. doi:10.1016/j.scitotenv.2019.06.275.
  • Collins, W.J., et al., 2011. Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, 4 (4), 1051–1075. doi:10.5194/gmdd-4-997-2011.
  • Collischonn, W., et al., 2007. The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrological Sciences Journal, 52 (5), 878–895. doi:10.1623/hysj.52.5.878.
  • De Jong, P., et al., 2021. The impact of regional climate change on hydroelectric resources in South America. Renewable Energy, 173, 76–91. doi:10.1016/j.renene.2021.03.077.
  • De Oliveira, V.A., et al., 2019. Modeling the effects of climate change on hydrology and sediment load in a headwater basin in the Brazilian Cerrado biome. Ecological Engineering, 133, 20–31. doi:10.1016/j.ecoleng.2019.04.021.
  • Dereczynski, C., et al., 2020. Downscaling of climate extremes over South America–part I: model evaluation in the reference climate. Weather and Climate Extremes, 29, 100273. doi:10.1016/j.wace.2020.100273.
  • Dibaba, W.T., Demissie, T.A., and Miegel, K., 2020. Watershed hydrological response to combined land use/land cover and climate change in highland Ethiopia: Finchaa catchment. Water, 12 (6), 1801. doi:10.3390/w12061801.
  • Didovets, I., et al., 2019. Climate change impact on regional floods in the Carpathian region. Journal of Hydrology: Regional Studie, 22, 100590. doi:10.1016/j.ejrh.2019.01.002.
  • Dlamini, N.S., et al., 2017. Modeling potential impacts of climate change on streamflow using projections of the 5th assessment report for the Bernam River Basin, Malaysia. Water, 9, 226. doi:10.3390/w9030226.
  • Eccles, R., Zhang, H., and Hamilton, D., 2019. A review of the effects of climate change on riverine flooding in subtropical and tropical regions. The Journal of Water and Climate Change, 10 (4), 687–707. doi:10.2166/wcc.2019.175.
  • El Jazouli, A., et al., 2019. Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment, 13, 361–374. doi:10.1016/j.rsase.2018.12.004.
  • Fan, F.M., et al., 2015. Um mapa de unidades de resposta hidrológica para a América do Sul. XXI Simpósio Brasileiro de Recursos Hídricos, 22 – 22 novembro. Brasília, PAP019919.
  • Farr, T.G., et al., 2007. The shuttle radar topography mission. Reviews of Geophysics, 45, 2. doi:10.1029/2005RG000183.
  • Fleischmann, A., et al., 2019. Modeling the role of reservoirs versus floodplains on large-scale river hydrodynamics. Natural Hazard, 99 (2), 1075–1104. doi:10.1007/s11069-019-03797-9.
  • Fleischmann, A.S., et al., 2021. Regional scale hydrodynamic modeling of the river-floodplain-reservoir continuum. Journal of Hydrology, 596, 126114. doi:10.1016/j.jhydrol.2021.126114
  • Gao, X., et al., 2008. Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorology and Atmospheric Physics, 100 (1), 73–86. doi:10.1007/s00703-008-0296-5.
  • Graham, L.P., Andréasson, J., and Carlsson, B., 2007. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods – a case study on the Lule River basin. Climatic Change, 81, 293–307. doi:10.1007/s10584-006-9215-2
  • Güiza-Villa, N., Gay-García, C., and Ospina-Noreña, J.E., 2020. Effects of climate change on water resources, indices, and related activities in Colombia. In: P.T. Chandrasekaran, M.S. Javaid, and A. Sadiq, eds. Res Water. IntechOpen. doi:10.5772/intechopen.90652.
  • Gutowski, J.W.J., et al., 2003. Temporal–spatial scales of observed and simulated precipitation in central US climate. The Journal of Climate, 16 (22), 3841–3847. doi:10.1175/1520-0442(2003)0162.0.CO;2.
  • Henao, F. and Dyner, I., 2020. Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158, 612–627. doi:10.1016/j.renene.2020.05.055
  • Hettiarachchi, S., Wasko, C., and Sharma, A., 2018. Increase in flood risk resulting from climate change in a developed urban watershed–the role of storm temporal patterns. Hydrology and Earth System Sciences, 22 (3), 2041–2056. doi:10.5194/hess-22-2041-2018.
  • Holbig, C.A., et al., 2018. PROJETA platform: accessing high resolution climate change projections over Central and South America using the Eta model. Agrometeoros, 26 (1). doi:10.31062/agrom.v26i1.26366.
  • Huber, I., et al., 2016. Do climate models project changes in solar resources? Solar Energy, 129, 65–84. doi:10.1016/j.solener.2015.12.016.
  • IDEAM, 2015. Observatorio del sistema de información del recurso hídrico, Sistema de Información Ambiental de Colombia. Bogotá, Colombia. Available from: http://sirh.ideam.gov.co/Sirh/faces/observatorio.jspx [Accessed 18 Jan 2020].
  • IDEAM, 2017. Colombia ecosystems map. Bogotá, Colombia. Available from: http://www.ideam.gov.co/web/ecosistemas/mapa-ecosistemas-continentalescosteros-marinos [Accessed 25 January 2020].
  • IDEAM, 2019. Estudio Nacional del Agua 2018. Bogotá: Ideam: 452. Available from: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdf [Accessed 18 January 2021].
  • IGAC-IDEAM-DANE, 2011. Reporte final de áreas afectadas por inundaciones 2010–2011. Bogotá D.C., Agosto 30 de, 35.
  • IPCC. Climate Change, 2014. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; Geneva, Switzerland: IPCC, 151.
  • Jardim, P.F., et al., 2020. A modeling assessment of large-scale hydrologic alteration in South American pantanal due to upstream dam operation. Frontiers in Environmental Science, 8, 567450. doi:10.3389/fenvs.2020.567450
  • Jimenéz-Segura, L.C.A., 2020. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Lasso, eds. Peces de la cuenca del río Magdalena, Colombia: diversidad, conservación y uso sostenible. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 434.
  • Kouwen, N., et al., 1993. Grouped response units for distributed hydrologic modeling. Journal of Water Resources Planning and Management, 119 (3), 289–305. doi:10.1061/(ASCE)0733-9496(1993)119:3(289).
  • Kreibich, H., et al., 2022. The challenge of unprecedented floods and droughts in risk management. Nature, 608 (7921), 80–86. doi:10.1038/s41586-022-04917-5.
  • Kundzewicz, Z.W. and Stakhiv, E.Z., 2010. Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55 (7), 1085–1089. doi:10.1080/02626667.2010.513211.
  • Kuo, C.C., Gan, T.Y., and Gizaw, M., 2015. Potential impact of climate change on intensity duration frequency curves of central Alberta. Climatic Change, 130, 115–129. doi:10.1007/s10584-015-1347-9
  • Kuriqi, A., et al., 2019. Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. Journal of Cleaner Production, 232, 1028–1042. doi:10.1016/j.jclepro.2019.05.358.
  • Lenderink, G., Buishand, A., and Van Deursen, W., 2007. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences, 11, 1145–1159. doi:10.5194/hess-11-1145-2007
  • Lopes, T.R., et al., 2021. Hydrological regime, water availability and land use/land cover change impact on the water balance in a large agriculture basin in the Southern Brazilian Amazon. Journal of South American Earth Sciences, 108, 103224. doi:10.1016/j.jsames.2021.103224.
  • Luo, M., et al., 2018. Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: a case study from the Kaidu River Basin in Western China. Water, 10 (8), 1046. doi:10.3390/w10081046.
  • Malhi, G.S., Kaur, M., and Kaushik, P., 2021. Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability, 13 (3), 1318. doi:10.3390/su13031318.
  • McGuire, A.D., et al., 2001. Carbon balance of the terrestrial biosphere in the 20th century: analyses of CO2, climate and land use effects with four process‐ based ecosystem models. Global Biogeochemical Cycles, 15 (1), 183–206. doi:10.1029/2000GB001298.
  • McNutt, M., 2013. Climate change impacts. Science, 80 (341), 435. doi:10.1126/science.1243256.
  • Mena, D., et al., 2021. An analysis of unmet water demand under climate change scenarios in the Gualí River Basin, Colombia, through the implementation of Hydro-Bid and WEAP hydrological modeling tools. The Journal of Water and Climate Change, 12 (1), 185–200. doi:10.2166/wcc.2019.118.
  • Mester, B., et al., 2021. Evaluation of river flood extent simulated with multiple global hydrological models and climate forcings. Environmental Research Letters, 16 (9), 094010. doi:10.1088/1748-9326/ac188d.
  • Molina, O., Luong, T.T., and Bernhofer, C., 2020. Projected changes in the water budget for Eastern Colombia due to climate change. Water, 12 (1), 65. doi:10.3390/w12010065.
  • Moniruzzaman, M., et al., 2021. Decadal urban land use/land cover changes and its impact on surface runoff potential for the Dhaka City and surroundings using remote sensing. Remote Sensing, 13 (1), 83. doi:10.3390/rs13010083.
  • Nakaegawa, T., Kitoh, A., and Hosaka, M., 2013. Discharge of major global rivers in the late 21st century climate projected with the high horizontal resolution MRI‐AGCMs. Hydrological Processes, 27 (23), 3301–3318. doi:10.1002/hyp.9831.
  • Nakaegawa, T. and Vergara, W., 2010. First projection of climatological mean river discharges in the Magdalena River Basin, Colombia, in a changing climate during the 21st century. Hydrological Research Letters, 4, 50–54. doi:10.3178/hrl.4.50
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • New, M., et al., 2002. A high-resolution data set of surface climate over global land areas. Climate Research, 21 (1), 1–25. doi:10.3354/cr021001.
  • Nobre, P., et al., 2013. Climate simulation and change in the brazilian climate model. Journal of Climate, 26 (17), 6716–6732. doi:10.1175/JCLI-D-12-00580.1.
  • Nóbrega, M.T., et al., 2011. Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15 (2), 585–595. doi:10.5194/hess-15-585-2011.
  • Nyaupane, N., et al., 2018. Evaluating future flood scenarios using CMIP5 climate projections. Water, 10 (12), 1866. doi:10.3390/w10121866.
  • Olesen, J.E., et al., 2007. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 81 (1), 123–143. doi:10.1007/s10584-006-9216-1.
  • Ortega, G., et al., 2021. Present‐ day and future climate over central and South America according to CMIP5/CMIP6 models. International Journal of Climatology, 41 (15), 6713–6735. doi:10.1002/joc.7221.
  • Paiva, R.C.D., et al., 2013. Large‐ scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resources Research, 49 (3), 1226–1243. doi:10.1002/wrcr.20067.
  • Paredes, A. and Ramírez, J., 2017. Energías Renovables variables y su contribución a la seguridad energética: complementariedad en Colombia. Bogotá, DC: Banco Interamericano de Desarrollo BID, 62.
  • Passaia, O.A., et al., 2020. Impact of large reservoirs on simulated discharges of Brazilian rivers. RBRH, 25. doi:10.1590/2318-0331.252020190084.
  • Piani, C., et al., 2010. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 395 (3–4), 199–215. doi:10.1016/j.jhydrol.2010.10.024.
  • Pontes, P.R.M., et al., 2017. MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environmental Modelling and Software, 94, 1–20. doi:10.1016/j.envsoft.2017.03.029.
  • Poveda, G., 2004. La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias, 28 (107), 201–222.
  • Poveda, G., Waylen, P.R., and Pulwarty, R.S., 2006. Annual and inter-annual variability of the present climate in Northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234 (1), 3–27. doi:10.1016/j.palaeo.2005.10.031.
  • Prudhomme, C. and Davies, H., 2009. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate. Climatic Change, 93, 177–195. doi:10.1007/s10584-008-9461-6
  • Riahi, K., et al., 2011. RCP-8.5: exploring the consequence of high emission trajectories. Climatic Change, 109 (1–2), 33–57. doi:10.1007/s10584-011-0149-y.
  • Rodríguez, E., et al., 2020. Combined use of local and global hydro meteorological data with hydrological models for water resources management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management, 34 (7), 2179–2199. doi:10.1007/s11269-019-02236-5.
  • Rosenberg, E.A., et al., 2010. Precipitation extremes and the impacts of climate change on storm water infrastructure in Washington State. Climate Change, 102, 319–349. doi:10.1007/s10584-010-9847-0.
  • Sajikumar, N. and Remya, R.S., 2015. Impact of land cover and land use change on runoff characteristics. Journal of Environmental Management, 161, 460–468. doi:10.1016/j.jenvman.2014.12.041
  • Salman, A.M. and Li, Y., 2018. Flood risk assessment, future trend modeling, and risk communication: a review of ongoing research. Natural Hazards Review, 19 (3), 04018011. doi:10.1061/(ASCE)NH.1527-6996.0000294.
  • Shuttleworth, W.J., 1993. Evaporation, and D.R. Maidment, ed. Handbook of hydrology. New York: McGraw-Hill, 521.
  • Silva, V.O., de Mello, C.R., and Chou, S.C., 2022. Projections of severe droughts in future climate in Southeast Brazil: a case study in Southern Minas Gerais State, Brazil. Theoretical and Applied Climatology, 148 (3), 1289–1302. doi:10.1007/s00704-022-03993-x.
  • Siqueira, V.A., et al., 2018. Toward continental hydrologic–hydrodynamic modeling in South America. Hydrology and Earth System Sciences, 22 (9), 4815–4842. doi:10.5194/hess-22-4815-2018.
  • Sorribas, M.V., et al., 2016. Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 136 (3), 555–570. doi:10.1007/s10584-016-1640-2.
  • Suárez, B., et al., 2022. Hidroituango intake gate closure-Emergency conditions. Revista Facultad de Ingeniería Universidad de Antioquia, no. 104, 140–151.
  • Sunde, M.G., et al., 2017. Integrating downscaled CMIP5 data with a physically based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed‐ use watershed. Hydrological Processes, 31 (9), 1790–1803. doi:10.1002/hyp.11150.
  • Talukdar, S., et al., 2020. Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sensing, 12 (7), 1135. doi:10.3390/rs12071135.
  • Teutschbein, C. and Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Journal of Hydrology, 456, 12–29. doi:10.1016/j.jhydrol.2012.05.052
  • Thomson, A.M., et al., 2011. RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Climatic Change, 109 (1), 77–94. doi:10.1007/s10584-011-0151-4.
  • Todini, E., 1996. The ARNO rainfall—runoff model. Journal of Hydrology, 175 (1–4), 339–382. doi:10.1016/S0022-1694.
  • Ullah, K.A., Jiang, J., and Wang, P., 2018. Land use impacts on surface water quality by statistical approaches. Global Journal of Environmental Science and Management, 4 (2), 231–250. doi:10.22034/GJESM.2018.04.02.010.
  • UPME, 2019. Plan Energético Nacional, Unidad de Planeación Minero Energética, Bogotá, Colombia. Available from: https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf [Accessed 22 April 2020].
  • Van Meijl, H., et al., 2018. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 13 (6), 064021. doi:10.1088/1748-9326/aabdc4.
  • Vargas, G., Hernández, Y., and Pabón, J.D., 2018. La Niña event 2010–2011: hydroclimatic effects and socioeconomic impacts in Colombia. In: S. Mal, R. Singh and C. Huggel, eds. Climate change, extreme events and disaster risk reduction. Sustainable development goals series. Springer, Cham. doi:10.1007/978-3-319-56469-2_15.
  • Villamizar, S.R., Pineda, S.M., and Carrillo, G.A., 2019. The effects of land use and climate change on the water yield of a watershed in Colombia. Water, 11 (2), 285. doi:10.3390/w11020285.
  • Von Randow, R.C.S., et al., 2019. Response of the river discharge in the Tocantins River Basin, Brazil, to environmental changes and the associated effects on the energy potential. Regional Environmental Change, 19 (1), 193–204. doi:10.1007/s10113-018-1396-5.
  • Walsh, J., 2014. Our changing climate. In: J.M. Melillo, T.C. Richmond, and G.W. Yohe, eds. Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, 19–67. doi:10.7930/J0KW5CXT.
  • Watanabe, M., et al., 2010. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. The Journal of Climate, 23 (23), 6312–6335. doi:10.1175/2010JCLI3679.1.
  • Wilks, D.S., 2011. Statistical methods in the atmospheric sciences. Vol. 100. London: Academic Press.
  • Willems, P. and Vrac, M., 2011. Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. Journal of Hydrology, 402 (3–4), 193–205. doi:10.1016/j.jhydrol.2011.02.030.
  • Winton, R.S., et al., 2022. Patterns and drivers of water quality changes associated with dams in the Tropical Andes. EGUsphere, 1–21. doi:10.5194/egusphere-2022-403.
  • Yapo, P.O., Gupta, H.V., and Sorooshian, S., 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204 (1–4), 83–97. doi:10.1016/S0022-1694(97).
  • Yin, J., et al., 2018. Addressing climate change impacts on streamflow in the Jinsha River basin based on CMIP5 climate models. Water, 10 (7), 910. doi:10.3390/w10070910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.