801
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Estimation of sediment discharge using a tree-based model

ORCID Icon, ORCID Icon &
Pages 1513-1528 | Received 27 Jul 2022, Accepted 18 Apr 2023, Published online: 06 Jul 2023

References

  • Ackers, P. and White, W.R., 1973. Sediment transport: new approach and analysis. Journal of Hydraulics Division, 99 (hy11), 1973. doi:10.1061/JYCEAJ.0003791
  • Alemdag, S., et al., 2016. Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Engineering Geology, 203, 70–82. doi:10.1016/j.enggeo.2015.12.002
  • American Society of Civil Engineers, 1982. Relationships between morphology of small streams and sediment yield. Journal of Hydraulics Division, 108 (11), 1328–1365. doi:10.1061/JYCEAJ.0005936
  • Azamathulla, H.M., et al., 2010. Machine learning approach to predict sediment load–a case study. Clean–Soil, Air, Water, 38 (10), 969–976. doi:10.1002/clen.201000068
  • Bagnold, R.A., 1980. Empirical correlation of bedload transport rates in flumes and natural rivers. Proceedings of the Royal Society of London, Series A Mathematics Physical Sciences, 372 (1751), 453–473. doi:10.1098/rspa.1980.0122.
  • Bagnold, R.A., et al., 1988. The Physics of Sediment Transport by Wind and Water. USA: American Society of Civil Engineers.
  • Bayram, A., et al., 2001. Cross-shore distribution of longshore sediment transport: comparison between predictive formulas and field measurements. Coastal Engineering, 44 (2), 79–99. doi:10.1016/S0378-3839(01)00023-0
  • Bhattacharya, B., Price, R.K., and Solomatine, D.P., 2007. Machine learning approach to modeling sediment transport. Journal of Hydraulics Engineering, 133 (4), 440–450. doi:10.1061/(ASCE)0733-9429(2007)133:4(440)
  • Brownlie, W.R., 1981. Prediction of flow depth and sediment discharge in open channels. Pasadena, California: California Institute of Technology.
  • Buyukyildiz, M. and Kumcu, S.Y., 2017. An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models. Water Resources Management, 31 (4), 1343–1359. doi:10.1007/s11269-017-1581-1
  • Colby, B.R., 1956. Relationship of sediment discharge to streamflow (No. 56–27). Washington, DC: US Department of Interior, Geological Survey, Water Resources Division.
  • Engelund, F. and Hansen, E., 1967. A monograph on sediment transport in alluvial streams. Copenhagen, Denmark: Technical University of Denmark.
  • Garcia, M., ed., 2008. Sedimentation engineering: processes, measurements, modeling, and practice. USA: American Society of Civil Engineers.
  • Higgins, A., et al., 2016. Suspended sediment transport in the Magdalena River (Colombia, South America): hydrologic regime, rating parameters and effective discharge variability. International Journal of Sediment Research, 31 (1), 25–35. doi:10.1016/j.ijsrc.2015.04.003
  • Jain, S.K., 2001. Development of integrated sediment rating curves using ANNS. Journal of Hydraulics Engineering, 127 (1), 30–37. doi:10.1061/(ASCE)0733-9429(2001)127:1(30)
  • Jang, E.K., 2017. Sediment Discharge Assessment for Rivers using Model Tree in Data Mining. Thesis (PhD). Yongin, Korea: Myongji University.
  • Jang, E.K. and Ji, U., 2021. Sediment load characteristics in South Korean rivers and assessment of sediment transport formulas. KSCE Journal of Civil Engineering, 25 (12), 4646–4660. doi:10.1007/s12205-021-1070-1
  • Julien, P.Y., 2010. Erosion and sedimentation. Cambridge, UK: Cambridge University Press.
  • Julien, P.Y., 2018. River mechanics. Cambridge, UK: Cambridge University Press.
  • Kakaei Lafdani, E., Moghaddam Nia, A., and Ahmadi, A., 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50–62. doi:10.1016/j.jhydrol.2012.11.048
  • Kang, W., et al., 2019. Sediment yield for ungauged watersheds in South Korea. KSCE Journal of Civil Engineering, 23 (12), 5109–5120. doi:10.1007/s12205-019-0085-3
  • Kang, W., Lee, K., and Jang, E.K., 2022. Evaluation and validation of estimated sediment yield and transport model developed with model tree technique. Applied Sciences, 12 (3), 1119. doi:10.3390/app12031119
  • Kargar, K., et al., 2019. Sediment transport modeling in open channels using neuro-fuzzy and gene expression programming techniques. Water Science Technology, 79 (12), 2318–2327. doi:10.2166/wst.2019.229
  • Kennedy, J.F. and Brooks, N.H., 1963. Laboratory study of an alluvial stream at constant discharge. In: Federal inter-agency sedimentation conference, June 1965, Washington, DC, 320–330.
  • Khosravi, K., et al., 2018. Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. Journal of Hydrology, 567, 165–179. doi:10.1016/j.jhydrol.2018.10.015
  • Khosravi, K., et al., 2020. Bedload transport rate prediction: application of novel hybrid data mining techniques. Journal of Hydrology, 585, 124774. doi:10.1016/j.jhydrol.2020.124774
  • Khozani, Z.S., Bonakdari, H., and Ebtehaj, I., 2017. An analysis of shear stress distribution in circular channels with sediment deposition based on gene expression programming. International Journal of Sediment Research, 32 (4), 575–584. doi:10.1016/j.ijsrc.2017.04.004
  • Khullar, N.K., Kothyari, U.C., and Ranga Raju, K.G., 2010. Suspended wash load transport of nonuniform sediments. Journal Hydraulic Engineering, 136 (8), 534–543. doi:10.1061/(ASCE)HY.1943-7900.0000223
  • Kisi, O., et al., 2012. Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58. doi:10.1016/j.jhydrol.2012.05.031
  • Kisi, O. and Guven, A., 2010. A machine code-based genetic programming for suspended sediment concentration estimation. Advanced Engineering Software, 41 (7–8), 939–945. doi:10.1016/j.advengsoft.2010.06.001
  • Kitsikoudis, V., Sidiropoulos, E., and Hrissanthou, V., 2015. Evaluation d’approches du transport de sédiments de rivières à lit sableux par apprentissage automatique. Hydrological Sciences Journal, 60 (9), 1566–1586. doi:10.1080/02626667.2014.909599
  • Korean Institute of Hydrological Survey, 2008. Hydrological Annual Report in 2007. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2009. Hydrological Annual Report in 2008. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2010. Hydrological Annual Report in 2009. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2011. Hydrological Annual Report in 2010. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2012. Hydrological Annual Report in 2011. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2013. Hydrological Annual Report in 2012. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2014. Hydrological Annual Report in 2013. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2015. Hydrological Annual Report in 2014. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2016. Hydrological Annual Report in 2015. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2017. Hydrological Annual Report in 2016. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2018. Hydrological Annual Report in 2017. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2019. Hydrological Annual Report in 2018. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2020. Hydrological Annual Report in 2019. Goyang, Korea: Ministry of Environment.
  • Korean Institute of Hydrological Survey, 2021. Hydrological Annual Report in 2020. Goyang, Korea: Ministry of Environment.
  • Laursen, E.M., 1958. The total sediment load of streams. Journal of Hydraulics Division, 84 (1), 1–36. doi:10.1061/JYCEAJ.0000158
  • Lopes, V.L., Osterkamp, W.R., and Bravo-Espinosa, M., 2001. Evaluation of selected bedload equations under transport-and supply-limited conditions. In: Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno, NV, 1192–1197.
  • Ma, Y. and Huang, H.Q., 2016. Controls of channel morphology and sediment concentration on flow resistance in a large sand-bed river: a case study of the lower Yellow River. Geomorphology, 264, 132–146. doi:10.1016/j.geomorph.2016.03.035
  • Makarynskyy, O., et al., 2015. Combining deterministic modelling with artificial neural networks for suspended sediment estimates. Applied Software Computing Journal, 35, 247–256. doi:10.1016/j.asoc.2015.05.044
  • Nagy, H.M., Watanabe, K., and Hirano, M., 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering, 128 (6), 588–595. doi:10.1061/(ASCE)0733-9429(2002)128:6(588)
  • Nhu, V.H., et al., 2020a. Daily water level prediction of zrebar lake (Iran): a comparison between m5p, random forest, random tree and reduced error pruning trees algorithms. ISPRS International Journal of Geo-Information, 9 (8), 479. doi:10.3390/ijgi9080479
  • Nhu, V.H., et al., 2020b. Monthly suspended sediment load prediction using artificial intelligence: testing of a new random subspace method. Hydrological Sciences Journal, 65 (12), 1–12. doi:10.1080/02626667.2020.1754419
  • Quinlan, J.R., 1992. Learning with continuous classes. In: 5th Australian joint conference on artificial intelligence, December 1992. Singapore, 343–348.
  • Safari, M.J.S. and Danandeh Mehr, A., 2018. Multigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed deposit. International Journal of Sediment Research, 33 (3), 262–270. doi:10.1016/j.ijsrc.2018.04.007
  • Salih, S.Q., et al., 2020. River suspended sediment load prediction based on river discharge information: application of newly developed data mining models. Hydrological Sciences Journal, 65 (4), 624–637. doi:10.1080/02626667.2019.1703186
  • Shamaei, E. and Kaedi, M., 2016. Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions. Applied Software Computing Journal, 45, 187–196. doi:10.1016/j.asoc.2016.03.009
  • Sheikh Khozani, Z., et al., 2020. An ensemble genetic programming approach to develop incipient sediment motion models in rectangular channels. Journal of Hydrology, 584, 124753. doi:10.1016/j.jhydrol.2020.124753
  • Shen, H.W. and Hung, C.S., 1972. An engineering approach to total bed-material load by regression analysis. Fort Collins, CO: Colorado State University.
  • Subida, M.D., et al., 2013. Multivariate methods and artificial neural networks in the assessment of the response of infaunal assemblages to sediment metal contamination and organic enrichment. Science of the Total Environment, 450–451, 289–300. doi:10.1016/j.scitotenv.2013.02.009
  • Taşar, B., et al., 2017. Forecasting of suspended sediment in rivers using artificial neural networks approach. International Journal on Advanced Engineering Research Science, 4 (12), 79–84. doi:10.22161/ijaers.4.12.14
  • Teixeira, L.C., et al., 2020. Artificial neural network and fuzzy inference system models for forecasting suspended sediment and turbidity in basins at different scales. Water Resources Management, 34 (11), 3709–3723. doi:10.1007/s11269-020-02647-9
  • Tfwala, S.S. and Wang, Y.M., 2016. Estimating sediment discharge using sediment rating curves and artificial neural networks in the Shiwen River, Taiwan. Water (Switzerland), 8 (2). doi:10.3390/w8020053
  • Van Maanen, B., et al., 2010. The use of artificial neural networks to analyze and predict alongshore sediment transport. Nonlinear Processes in Geophysics, 17 (5), 395–404. doi:10.5194/npg-17-395-2010
  • Van Rijn, L.C., 1984. Sediment transport, Part II: suspend load transport. Journal of Hydrologic Engineering, ASCE, 1104 (11), 1613–1641. doi:10.1061/(ASCE)0733-9429(1984)110:11(1613)
  • Vanoni, V.A., 1975. Sedimentation engineering: sediment discharge formulas. New York: American Society of Civil Engineers.
  • Wang, Y. and Witten, I.H., 1996. Induction of model trees for predicting continuous classes. Hamilton, New Zealand: University of Waikato, Department of Computer Science.
  • Witten, I.H., et al., 2016. Data mining: practical machine learning tools and techniques. New Zealand: Morgan Kaufmann.
  • Woo, H. and Ryu, K., 1990. Comparative evaluation of some selected sediment transport formulas. KSCE Journal of Civil and Environmental Engineering Research, 10 (4), 67–75.
  • Woo, H.S., Kim, W., and Ji, U., 2015. River hydraulics - 2nd Edition. Paju, Korea: Cheong Moon Gak.
  • Yang, C.T., 1973. Incipient motion and sediment transport. Journal of Hydraulics Division, 99 (10), 1679–1704. doi:10.1061/JYCEAJ.0003766
  • Yang, C.T., 1979. Unit stream power equations for total load. Journal of Hydrology, 40 (1–2), 123–138.
  • Yang, C.T., 1984. Unit stream power equation for gravel. Journal of Hydraulic Engineering, 110 (12), 1783–1797. doi:10.1061/(asce)0733-9429(1984)110:12(1783)
  • Yang, C.T., 1996. Sediment transport: theory and practice. New York: McGraw-Hill.
  • Yang, C.T. and Hunag, C., 2001. Applicability of sediment transport formulas. International Journal of Sediment Research, 16 (3), 335–353.
  • Yang, C.T., Molinas, A., and Wu, B., 1996. Sediment transport in the Yellow River. Journal of Hydraulic Engineering, 122 (5), 237–244. doi:10.1061/(ASCE)0733-9429(1996)122:5(237)
  • Yang, C.T. and Simões, F.J., 2005. Wash load and bed-material load transport in the Yellow River. Journal of Hydraulic Engineering, 131 (5), 413–418. doi:10.1061/(ASCE)0733-9429(2005)131:5(413)
  • Yang, C.T. and Wan, S., 1991. Comparisons of selected bed-material load formulas. Journal of Hydraulic Engineering, 117 (8), 973–989. doi:10.1061/(ASCE)0733-9429(1991)117:8(973)
  • Zakaria, N.A., et al., 2010. Gene expression programming for total bed material load estimation-a case study. Science of the Total Environment, 408 (21), 5078–5085. doi:10.1016/j.scitotenv.2010.07.048