239
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low-impact development (LID) control feasibility in a small-scale urban catchment for altered climate change scenarios

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1881-1894 | Received 20 Mar 2023, Accepted 20 Jun 2023, Published online: 21 Aug 2023

References

  • Akbari-Alashti, H., et al., 2014. Multi-reservoir real-time operation rules: a new genetic programming approach. Proceedings of the Institution of Civil Engineers - Water Management, 167 (10), 561–576. doi:10.1680/wama.13.00021
  • AL-Areeq, A., Al-Zahrani, M., and Chowdhury, S., 2021. Rainfall intensity–duration–frequency (IDF) curves: effects of uncertainty on flood protection and runoff quantification in southwestern Saudi Arabia. Arabian Journal for Science and Engineering, 46 ( 11), 10993–11007. doi:10.1007/s13369-021-06142-0
  • AL-Hamati, A.A.N., Ghazali, A.H., and Mohammed, T.A., 2010. Determination of storage volume required in a sub-surface stormwater detention/retention system. Journal of Hydro-Environment Research, 4 (1), 47–53. doi:10.1016/j.jher.2009.12.002
  • Allen, V., Walker, T., and Schemper, T., 2010. Development and application of modular LID site planning tool. In: Low impact development of 2010 redefining water city - Proceedings of the 2010 international low impact development conference. San Francisco, CA, 714–721. doi:10.1061/41099(367)63
  • Bahrami, M., Bozorg-Haddad, O., and Loáiciga, H.A., 2019. Optimizing stormwater low-impact development strategies in an urban watershed considering sensitivity and uncertainty. Environmental Monitoring and Assessment, 191 (6). doi:10.1007/s10661-019-7488-y
  • Barbaro, G., et al., 2021. Innovations in best practices: approaches to managing urban areas and reducing flood risk in reggio calabria (Italy). Sustainability, 13 (6). doi:10.3390/su13063463
  • Bertrand-Krajewski, J.-L., 2020. Integrated urban stormwater management: evolution and multidisciplinary perspective. Journal of Hydro-Environment Research. doi:10.1016/j.jher.2020.11.003
  • Bhatt, A., Bradford, A., and Abbassi, B.E., 2019. Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. Journal of Environmental Management, 231, 98–109. doi:10.1016/j.jenvman.2018.10.033
  • Brudler, S., et al., 2016. Life cycle assessment of stormwater management in the context of climate change adaptation. Water Research, 106, 394–404. doi:10.1016/j.watres.2016.10.024
  • Burns, M.J., et al., 2012. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landscape and Urban Planning, 105 (3), 230–240. doi:10.1016/j.landurbplan.2011.12.012
  • Che, W. and Zhang, W., 2019. Urban stormwater management and sponge city concept in China. Urban Water Management for Future Cities: Technical and Institutional Aspects from Chinese and German Perspective, 3–11. doi:10.1007/978-3-030-01488-9_1
  • Chow, V.T., Maidment, D.R., and Mays, L.W., 1988. Applied hydrology. International association of scientific hydrology. Bulletin. doi:10.1080/02626666509493376
  • Coffman, L., Clar, M., and Weinstein, N., 2000. Low impact development management strategies for Wet Weather Flow (WWF) control. In: Building partnerships. Vol. 104. Reston, VA: American Society of Civil Engineers, 1–7. doi:10.1061/40517(2000)109
  • Coffman, L., Clar, M., and Weinstein, N., 2004. Low impact development management strategies for Wet Weather Flow (WWF) control. Joint conference on water resource engineering and water resources planning and management 2000: Building partnerships, Vol. 104. Minneapolis, MN. doi:10.1061/40517(2000)109
  • da Silva, C.V.F., et al., 2018. Climate change impacts and flood control measures for highly developed urban watersheds. Water (Switzerland), 10 (7), 1–18. doi:10.3390/w10070829
  • Das, J. and Umamahesh, N.V., 2016. Downscaling monsoon rainfall over River Godavari Basin under different climate-change scenarios. Water Resources Management, 30, 5575–5587. doi:10.1007/s11269-016-1549-6
  • De Paola, F., et al., 2015. Sustainable development of storm-water systems in African cities considering climate change. Procedia Engineering, 119 (1), 1181–1191. doi:10.1016/j.proeng.2015.08.970
  • Fletcher, T.D., et al., 2015. SUDS, LID, BMPs, WSUD and more – the evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12 (7), 525–542. doi:10.1080/1573062X.2014.916314
  • Fu, G. and Butler, D. 2014. Copula-based frequency analysis of overflow and flooding in urban drainage systems. Journal of Hydrology, 510, 49–58. doi:10.1016/j.jhydrol.2013.12.006
  • Gyasi-Agyei, Y. and Mahbub, S.M.P.B., 2007. A stochastic model for daily rainfall disaggregation into fine time scale for a large region. Journal of Hydrology, 347 (3–4), 358–370. doi:10.1016/j.jhydrol.2007.09.047
  • Haddad, O.B., et al., 2009. Optimal cultivation rules in multi-crop irrigation areas. Irrigation and Drainage, 58 (1), 38–49. doi:10.1002/ird.381
  • Islam, N., et al., 2011. Reviewing source water protection strategies: a conceptual model for water quality assessment. Environmental Reviews, 19 (1), 68–105. doi:10.1139/A11-001
  • Jeganathan, A. and Andimuthu, R., 2013. Developing climate change scenarios for Tamil Nadu, India using MAGICC/SCENGEN. Theoretical and Applied Climatology, 114 (3–4), 705–714. doi:10.1007/s00704-013-0871-7
  • Jeong, H., et al., 2016. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia. Frontiers of Environmental Science & Engineering, 10 (6), 1–13. doi:10.1007/s11783-016-0851-0
  • Jiang, A.Z. and McBean, E.A., 2021. Performance of lot-level low impact development technologies under historical and climate change scenarios. Journal of Hydro-Environment Research, 38, 4–13. doi:10.1016/j.jher.2021.07.004
  • Jung, M., et al., 2015. Analysis of effects of climate change on runoff in an urban drainage system: a case study from Seoul, Korea. Water Science and Technology, 71 (5), 653–660. doi:10.2166/wst.2014.341
  • Lee, J.G., et al., 2012. A watershed-scale design optimization model for stormwater best management practices. Environmental Modelling & Software, 37, 6–18. doi:10.1016/j.envsoft.2012.04.011
  • Lee, M.-H. and Hsu, I.-P., 2021. Estimation of the annual rainfall erosivity index based on hourly rainfall data in a tropical region. Soil and Water Research, 16 (2), 74–84. doi:10.17221/25/2020-SWR
  • Lee, T. and Jeong, C. 2014. Nonparametric statistical temporal downscaling of daily precipitation to hourly precipitation and implications for climate change scenarios. Journal of Hydrology, 510, 182–196. doi:10.1016/j.jhydrol.2013.12.027
  • Licznar, P., Łomotowski, J., and Rupp, D.E., 2011. Random cascade driven rainfall disaggregation for urban hydrology: an evaluation of six models and a new generator. Atmospheric Research, 99 (3–4), 563–578. doi:10.1016/j.atmosres.2010.12.014
  • Liu, X., et al., 2020. A new framework for rainfall downscaling based on EEMD and an improved fractal interpolation algorithm. Stochastic Environmental Research and Risk Assessment, 34 (8), 1147–1173. doi:10.1007/s00477-020-01823-y
  • Liu, Y., et al., 2016. Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environmental Modelling & Software, 80, 281–296. doi:10.1016/j.envsoft.2016.03.005
  • Loganathan, P. and Mahindrakar, A.B., 2020. Assessment and ranking of CMIP5 GCMs performance based on observed statistics over Cauvery river basin – peninsular India. Arabian Journal of Geosciences, 13 (22). doi:10.1007/s12517-020-06217-6
  • Loganathan, P. and Mahindrakar, A.B., 2021. Statistical downscaling using principal component regression for climate change impact assessment at the Cauvery river basin. Journal of Water and Climate Change, 12, 2314–2324. doi:10.2166/wcc.2021.223
  • Majumdar, C. and Gupta, G., 2009. Willingness to pay and municipal water pricing in transition: a case study. Journal of Integrative Environmental Sciences, 6 (4), 247–260. doi:10.1080/19438150903068224
  • Marchi, A., Dandy, G.C., and Maier, H.R., 2016. Integrated approach for optimizing the design of aquifer storage and recovery stormwater harvesting schemes accounting for externalities and climate change. Journal of Water Resources Planning and Management, 142 (4), 04016002. doi:10.1061/(ASCE)WR.1943-5452.0000628
  • McIntyre, N., Shi, M., and Onof, C. 2016. Incorporating parameter dependencies into temporal downscaling of extreme rainfall using a random cascade approach. Journal of Hydrology, 542, 896–912. doi:10.1016/j.jhydrol.2016.09.057
  • Mendes, D. and Marengo, J.A., 2010. Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios. Theoretical and Applied Climatology, 100 (3), 413–421. doi:10.1007/s00704-009-0193-y
  • Müller, H. and Haberlandt, U., 2018. Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology. Journal of Hydrology, 556, 847–864. doi:10.1016/j.jhydrol.2016.01.031
  • Nguyen, T.T., et al., 2020. A new model framework for sponge city implementation: emerging challenges and future developments. Journal of Environmental Management, 253 (October 2019), 109689. doi:10.1016/j.jenvman.2019.109689
  • Oliazadeh, A., et al., 2021. Developing an urban runoff management model by using satellite precipitation datasets to allocate low impact development systems under climate change conditions. Theoretical and Applied Climatology. Springer Vienna. doi:10.1007/s00704-021-03744-4
  • Pan, S., et al., 2021. Temporary dependency of parameter sensitivity for different flood types. Hydrology Research, 52 (5), 990–1014. doi:10.2166/nh.2021.187
  • Risch, E., et al., 2015. Life cycle assessment of urban wastewater systems: quantifying the relative contribution of sewer systems. Water Research, 77, 35–48. doi:10.1016/j.watres.2015.03.006
  • Schaller, N., et al., 2020. The role of spatial and temporal model resolution in a flood event storyline approach in western Norway. Weather and Climate Extremes, 29 (June), 100259. doi:10.1016/j.wace.2020.100259
  • Scher, S. and Peßenteiner, S., 2021. Technical note: temporal disaggregation of spatial rainfall fields with generative adversarial networks. Hydrology and Earth System Sciences, 25 (6), 3207–3225. doi:10.5194/hess-25-3207-2021
  • Shrivastava, S. and Unnikrishnan, S., 2019. Review of life cycle assessment and environmental impacts from the oil & Gas sector. In: G. R. P. J. R. M. Jain K. Sangle S., ed. Managing technology for inclusive and sustainable growth - 28th international conference for the international association of management. Excel India Publishers, 972–984. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081110534&partnerID=40&md5=446eee38ced3a3e424b193b5ebc81266
  • Sorup, H.J.D., et al., 2016. Efficiency of stormwater control measures for combined sewer retrofitting under varying rain conditions: quantifying the three points approach (3PA). Environmental Science & Policy, 63, 19–26. doi:10.1016/j.envsci.2016.05.010
  • Sun, Y., et al., 2019. Deriving intensity–duration–frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data. Geoscience Letters, 6 (1). doi:10.1186/s40562-019-0147-x
  • Wadhwa, A. and Pavan Kumar, K., 2020. Selection of best stormwater management alternative based on storm control measures (SCM) efficiency indices. Water Policy, 22 (4), 702–715. doi:10.2166/wp.2020.168
  • Wang, J., et al., 2021. Comparison of infiltration models to describe infiltration characteristics of bioretention. Journal of Hydro-Environment Research, 38, 35–43. doi:10.1016/j.jher.2021.08.002
  • Zhang, W., et al., 2021a. Influence of rainfall on the performance of bioretention systems modified with activated carbon and biochar. Journal of Hydro-Environment Research, 38, 63–71. doi:10.1016/j.jher.2021.06.001
  • Zhang, Z., et al., 2021b. Improvement of rainwater infiltration and storage capacity by an enhanced seepage well: from laboratory investigation to HYDRUS-2D numerical analysis. Journal of Hydro-Environment Research, 39, 15–24. doi:10.1016/j.jher.2021.10.001
  • Zhu, D.Z., et al., 2021. Sustainable urban drainage: current interests and future needs. Journal of Hydro-Environment Research, 38, 1–3. doi:10.1016/j.jher.2021.09.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.