276
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Flash-flood susceptibility modelling in a data-scarce region using a novel hybrid approach and trend analysis of precipitation

&
Pages 2336-2356 | Received 25 May 2022, Accepted 15 Aug 2023, Published online: 06 Nov 2023

References

  • Akbar, T.A., et al., 2019. Investigative spatial distribution and modelling of existing and future urban land changes and its impact on urbanization and economy. Remote Sensing, 11 (2), 105. doi:10.3390/rs11020105
  • Alashan, S., 2018. An improved version of innovative trend analyses. Arabian Journal of Geosciences, 11 (3). doi:10.1007/s12517-018-3393-x
  • Ali, S.A., et al., 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecological Indicators, 117, 106620. doi:10.1016/j.ecolind.2020.106620
  • Arabameri, A., et al., 2019. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 660, 443–458. doi:10.1016/j.scitotenv.2019.01.021
  • Arabameri, A., et al., 2020. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. Journal of Hydrology, 587, 125007. doi:10.1016/j.jhydrol.2020.125007
  • Banerjee, A., Dimri, A.P., and Kumar, K., 2021. Temperature over the Himalayan foothill state of Uttarakhand: present and future. Journal of Earth System Science, 130 (1), 1–14. doi:10.1007/s12040-020-01527-5
  • Bayazit, M. and Önöz, B., 2007. To prewhiten or not to prewhiten in trend analysis? Hydrological Sciences Journal, 52 (4), 611–624. doi:10.1623/hysj.52.4.611
  • Bisht, A., 2013. Uttarakhand tourism: recipe for disaster. Hardnews. Available from: http://www.hardnewsmedia.com/2013/06/5955 [Accessed 19 Jun 2013].
  • Bui, D.T., et al., 2019a. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 668, 1038–1054. doi:10.1016/j.scitotenv.2019.02.422
  • Bui, D.T., et al., 2019b. Flood spatial modeling in northern Iran using remote sensing and gis: a comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing, 11 (13), 1589. doi:10.3390/rs11131589
  • Bui, D.T., et al., 2019c. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena, 179, 184–196. doi:10.1016/j.catena.2019.04.009
  • Cassidy, C., 2020. Parameter tuning naïve Bayes for automatic patent classification. World Patent Information, 61, 101968. doi:10.1016/j.wpi.2020.101968
  • Chakrabortty, R., et al., 2022. Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India. Geocarto International, 37 (23), 6713–6735. doi:10.1080/10106049.2021.1953618
  • Chen, W., et al., 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 575, 864–873. doi:10.1016/j.jhydrol.2019.05.089
  • Chopra, R. and Singh, A., 2016. State of India’s Rivers for India Rivers Week. Available from: Choprasandrp.files.wordpress.com/2017/04/uttrakhand-report.pdf [Accessed 5 Apr 2017].
  • Choubin, B., et al., 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. doi:10.1016/j.scitotenv.2018.10.064
  • Choudhury, S., et al., 2022. Flash flood susceptibility mapping using GIS-based AHP method. Spatial Modelling of Flood Risk and Flood Hazards: Societal Implications, 119–142. doi:10.1007/978-3-030-94544-2_8
  • Costache, R., Ngo, P.T.T., and Bui, D.T., 2020. Novel ensembles of deep learning neural network and statistical learning for flash-flood susceptibility mapping. Water, 12 (6), 1549. doi:10.3390/w12061549
  • Costache, R. and Tien Bui, D., 2019. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: a case study at the Putna river catchment of Romania. Science of the Total Environment, 691, 1098–1118. doi:10.1016/j.scitotenv.2019.07.197
  • Costache, R. and Tien Bui, D., 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Science of the Total Environment, 712, 136492. doi:10.1016/j.scitotenv.2019.136492
  • Daoud, J.I., 2017. Multicollinearity and regression analysis. Journal of Physics: Conference Series, 949, 12009. doi:10.1088/1742-6596/949/1/012009
  • Darabi, H., et al., 2019. Urban flood risk mapping using the GARP and QUEST models: a comparative study of machine learning techniques. Journal of Hydrology, 569, 142–154. doi:10.1016/j.jhydrol.2018.12.002
  • Das, P.K., 2013. ‘The Himalayan Tsunami’- cloudburst, flash flood & death toll: a geographical postmortem. IOSR Journal of Environmental Science, Toxicology and Food Technology, 7 (2), 33–45. doi:10.9790/2402-0723345
  • Das, S., Ashrit, R., and Moncrieff, M.W., 2006. Simulation of a Himalayan cloudburst event. Journal of Earth System Science, 115 (3), 299–313. doi:10.1007/BF02702044
  • Dhar, O.N. and Nandargi, S., 1993. Spatial distribution of severe rainstorms over India and their associated areal rain depths Spatial distribution of severe rainstorms over India and their associated areal rain depths. Mausam, 44 (4), 373–380. doi:10.54302/mausam.v44i4.3935
  • Dhar, O.N., Soman, M.K., and Mulye, S.S., 1984. Rainfall over the southern slopes of the Himalayas and the adjoining plains during ‘break in the monsoon’. Journal of Climatology, U.K, 4 (6), 671–676. doi:10.1002/joc.3370040610
  • Dimri, A.P., et al., 2015. Western disturbances: a review. Reviews of Geophysics, 53 (2), 225–246. doi:10.1002/2014RG000460
  • Dimri, A.P., et al., 2017. Cloudbursts in Indian Himalayas: a review. Earth-Science Reviews, 168, 1–23. doi:10.1016/j.earscirev.2017.03.006
  • Dobhal, D.P., et al., 2013. Kedarnath disaster: facts and plausible causes. Current Science, 105 (2), 171–174.
  • Dube, F., et al., 2014. Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District - Zimbabwe. Physics and Chemistry of the Earth, 67–69, 145–152. doi:10.1016/j.pce.2014.02.002
  • Freund, Y. and Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55 (1), 119–139. doi:10.1006/jcss.1997.1504
  • Gadgil, S., 2003. The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences, 31 (1), 429–467. doi:10.1146/annurev.earth.31.100901.141251
  • Goodrich, D.C., et al., 1995. Measurement and analysis of small-scale convective storm rainfall variability. Journal of Hydrology, 173 (1–4), 283–308. doi:10.1016/0022-1694(95)02703-R
  • Gupta, V., Dobhal, D.P., and Vaideswaran, S.C., 2013. August 2012 cloudburst and subsequent flash flood in the Asi Ganga, a tributary of the Bhagirathi river, Garhwal Himalaya, India. Current Science, 105 (2), 249–253.
  • Hamed, K.H., 2009. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. Journal of Hydrology, 368 (1–4), 143–155. doi:10.1016/j.jhydrol.2009.01.040
  • Hapuarachchi, H.A.P., Wang, Q.J., and Pagano, T.C., 2011. A review of advances in flash flood forecasting. Hydrological Processes, 25 (18), 2771–2784. doi:10.1002/hyp.8040
  • Hosseini, F.S., et al., 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Science of the Total Environment, 711, 135161. doi:10.1016/j.scitotenv.2019.135161
  • Hu, G., et al., 2020. Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier. Biosystems Engineering, 194, 138–151. doi:10.1016/j.biosystemseng.2020.03.021
  • Jahangir, M.H., Mousavi Reineh, S.M., and Abolghasemi, M., 2019. Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather and Climate Extremes, 25, 100215. doi:10.1016/j.wace.2019.100215
  • Janizadeh, S., et al., 2019. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustainability, 11 (19), 5426. doi:10.3390/su11195426
  • Joshi, V. and Kumar, K., 2006. Extreme rainfall events and associated natural hazards in Alaknanda valley, Indian Himalayan region. Journal of Mountain Science, 3 (3), 228–236. doi:10.1007/s11629-006-0228-0
  • Kansakar, S.R., et al., 2004. Spatial pattern in the precipitation regime of Nepal. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24 (13), 1645–1659. doi:10.1002/joc.1098
  • Khanduri, S., 2020. Cloudbursts Over Indian sub-continent of Uttarakhand Himalaya: a traditional habitation input from Bansoli, District-Chamoli, India. International Journal of Earth Sciences Knowledge and Applications, 2 (2), 48–63.
  • Khosravi, K., et al., 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323. doi:10.1016/j.jhydrol.2019.03.073
  • Krishnamurti, T.N. and Bhalme, H.N., 1976. Oscillations of a monsoon system. Part I. Observational aspects. Journal of Atmospheric Sciences, 33 (10), 1937–1954. doi:10.1175/1520-0469(1976)033<937:ooamsp>2.0.CO;2
  • Kumar, U., et al., 2023. Spatio-temporal trend and change detection of rainfall for Kosi River basin, Uttarakhand using long-term (115 years) gridded data. Arabian Journal of Geosciences, 16 (3), 173. doi:10.1007/s12517-023-11244-0
  • Kumari, S., et al., 2019. Return period of extreme rainfall substantially decreases under 1.5 C and 2.0 C warming: a case study for Uttarakhand, India. Environmental Research Letters, 14 (4), 044033. doi:10.1088/1748-9326/ab0bce
  • Lau, K.M., Kim, M.K., and Kim, K.M., 2006. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Climate Dynamics, 26 (7–8), 855–864. doi:10.1007/s00382-006-0114-z
  • Lee, S., et al., 2020. Landslide susceptibility mapping using naïve Bayes and Bayesian network models in Umyeonsan, Korea. Geocarto International, 35 (15), 1665–1679. doi:10.1080/10106049.2019.1585482
  • Linkov, I., et al., 2015. From “weight of evidence” to quantitative data integration using multi-criteria decision analysis and Bayesian methods. Altex, 32 (1), 3–8. doi:10.14573/altex.1412231
  • Liu, Q., et al., 2020. Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data. Tunnelling and Underground Space Technology, 106, 103595. doi:10.1016/j.tust.2020.103595
  • Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13 (3), 245–259. doi:10.2307/1907187
  • Marra, F., et al., 2017. Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean. Hydrology and Earth System Sciences, 21 (5), 2389–2404. doi:10.5194/hess-21-2389-2017
  • Marra, F. and Morin, E., 2015. Use of radar QPE for the derivation of Intensity–Duration–Frequency curves in a range of climatic regimes. Journal of Hydrology, 531, 427–440. doi:10.1016/j.jhydrol.2015.08.064
  • McCallum, A. and Nigam, K., 1998. A comparison of event models for naive Bayes text classification. AAAI-98 Workshop on Learning for Text Categorization, 752 (1), 41–48.
  • Mishra, P.K., et al., 2022. Assessment of cloudbursts, extreme rainfall and vulnerable regions in the Upper Ganga basin, Uttarakhand, India. International Journal of Disaster Risk Reduction, 69, 102744. doi:10.1016/j.ijdrr.2021.102744
  • Mohanty, M.P., Mudgil, S., and Karmakar, S., 2020. Flood management in India: a focussed review on the current status and future challenges. International Journal of Disaster Risk Reduction, 49, 101660. doi:10.1016/j.ijdrr.2020.101660
  • Mosase, E. and Ahiablame, L., 2018. Rainfall and temperature in the Limpopo river basin, Southern Africa: means, variations, and trends from 1979 to 2013. Water, 10 (4), 364. doi:10.3390/w10040364
  • Nandargi, S., Gaur, A., and Mulye, S.S., 2016. Hydrological analysis of extreme rainfall events and severe rainstorms over Uttarakhand, India. Hydrological Sciences Journal, 61 (12), 2145–2163. doi:10.1080/02626667.2015.1085990
  • Nhu, V.H., et al., 2020. Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve Bayes tree, artificial neural network, and support vector machine algorithms. International Journal of Environmental Research and Public Health, 17 (8), 2749. doi:10.3390/ijerph17082749
  • Pande, R.K., 2010. Flash flood disasters in Uttarakhand. Disaster Prevention and Management: An International Journal, 19 (5), 565–570. doi:10.1108/09653561011091896
  • Pandey, K. and Vishwakarma, D.K., 2019. Flash Floods Cause and Remedial Measures for Their Control in Hilly Regions. Applied Agricultural Practices for Mitigating Climate Change, 77–100. doi:10.1201/9780429326400-7
  • Pham, B.T., et al., 2020. A comparative study of kernel logistic regression, radial basis function classifier, multinomial naïve Bayes, and logistic model tree for flash flood susceptibility mapping. Water, 12 (1), 239. doi:10.3390/w12010239
  • Rahmati, O. and Pourghasemi, H.R., 2017. Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models. Water Resources Management, 31 (5), 1473–1487. doi:10.1007/s11269-017-1589-6
  • Sa’adi, Z., et al., 2019. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131 (3), 263–277. doi:10.1007/s00703-017-0564-3
  • Sahoo, S.K., et al., 2020. Impact of land-use changes on the genesis and evolution of extreme rainfall event: a case study over Uttarakhand, India. Theoretical and Applied Climatology, 140 (3–4), 915–926. doi:10.1007/s00704-020-03129-z
  • Sahu, N., et al., 2020. Why apple orchards are shifting to the higher altitudes of the Himalayas? PLoS One, 15 (7), e0235041. doi:10.1371/journal.pone.0235041
  • Sajwan, K.S. and Khanduri, S., 2018. Investigation of hydrometrological disaster affected malpa and mangti area, Pithoragarh District, Uttarakhand, India. Journal of Geography and Natural Disasters, 8 (2), 1–7. doi:10.4172/2167-0587.1000228
  • Saleem Ashraf, M.L., et al., 2017. Understanding flood risk management in Asia: concepts and challenges. Understanding Flood Risk Management in Asia: Concepts and Challenges, 177. doi:10.5772/intechopen.69139
  • Sati, V.P. and Kumar, S., 2022. Environmental and economic impact of cloudburst-triggered debris flows and flash floods in Uttarakhand Himalaya: a case study. Geoenvironmental Disasters, 9 (1). doi:10.1186/s40677-022-00208-3
  • Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63 (324), 1379–1389. doi:10.1080/01621459.1968.10480934
  • Şen, Z., 2012. Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17 (9), 1042–1046. doi:10.1061/(asce)he.1943-5584.0000556
  • Şen, Z., 2014. Trend identification simulation and application. Journal of Hydrologic Engineering, 19 (3), 635–642. doi:10.1061/(ASCE)HE.1943-5584.0000811
  • Shahabi, H., et al., 2021. Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 12 (3), 101100. doi:10.1016/j.gsf.2020.10.007
  • Sharon, D. and Kutiel, H., 1986. The distribution of rainfall intensity in Israel, its regional and seasonal variations and its climatological evaluation. Journal of Climatology, 6 (3), 277–291. doi:10.1002/joc.3370060304
  • Siahkamari, S., et al., 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto International, 33 (9), 927–941. doi:10.1080/10106049.2017.1316780
  • Smith, E.P., Lipkovich, I., and Ye, K., 2002. Weight-of-evidence (WOE): quantitative estimation of probability of impairment for individual and multiple lines of evidence. Human and Ecological Risk Assessment, 8 (7), 1585–1596. doi:10.1080/20028091057493
  • Spearman, C., 1961. The proof and measurement of association between two things. Studies in Individual Differences: The Search for Intelligence, 45–58. doi:10.1037/11491-005
  • Tazen, F., et al., 2019. Trends in flood events and their relationship to extreme rainfall in an urban area of Sahelian West Africa: the case study of Ouagadougou, Burkina Faso. Journal of Flood Risk Management, 12 (S1), e12507. doi:10.1111/jfr3.12507
  • Tehrany, M.S., Pradhan, B., and Jebur, M.N., 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343. doi:10.1016/j.jhydrol.2014.03.008
  • Tehrany, M.S., Pradhan, B., and Jebur, M.N., 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment, 29 (4), 1149–1165. doi:10.1007/s00477-015-1021-9
  • Termeh, S.V.R., et al., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451. doi:10.1016/j.scitotenv.2017.09.262
  • Thayyen, R.J., et al., 2013. Study of cloudburst and flash floods around Leh, India, during August 4-6, 2010. Natural Hazards, 65 (3), 2175–2204. doi:10.1007/s11069-012-0464-2
  • Vandiepenbeeck, M., 1997. Bilan climatologique saisonnier. Hiver 1997: unepériode de froid remarquable. Ciel Terre, 113, 65–66.
  • Verma, S., et al., 2022. Rapid flash flood calamity in Chamoli, Uttarakhand region during Feb 2021: an analysis based on satellite data. Natural Hazards, 112 (2), 1379–1393. doi:10.1007/s11069-022-05232-y
  • Von Storch, H., 1999. Misuses of statistical analysis in climate research. In: H. von Storch and A. Navarra, eds. Analysis of climate variability. Berlin, Heidelberg: Springer, 11–26. doi:10.1007/978-3-662-03744-7_2
  • Wang, X.J., et al., 2016. Impact of climate change on regional irrigation water demand in Baojixia irrigation district of China. Mitigation and Adaptation Strategies for Global Change, 21 (2), 233–247. doi:10.1007/s11027-014-9594-z
  • Yue, S. and Wang, C.Y., 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 38 (6), 4–1. doi:10.1029/2001WR000861.
  • Zdravevski, E., Lameski, P., and Kulakov, A., 2011. Weight of evidence as a tool for attribute transformation in the preprocessing stage of supervised learning algorithms. Proceedings of the International Joint Conference on Neural Networks, 181–188. doi:10.1109/IJCNN.2011.6033219
  • Zhao, G., et al., 2018. Mapping flood susceptibility in mountainous areas on a national scale in China. Science of the Total Environment, 615, 1133–1142. doi:10.1016/j.scitotenv.2017.10.037
  • Zhao, G., et al., 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of the Total Environment, 659, 940–949. doi:10.1016/j.scitotenv.2018.12.217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.