749
Views
1
CrossRef citations to date
0
Altmetric
Research Article

What interrupted monomictic mixing in Lake Biwa? Heat budget analysis using a circulation model

ORCID Icon, , , , &
Pages 2298-2316 | Received 18 Nov 2021, Accepted 23 Aug 2023, Published online: 30 Oct 2023

References

  • Adrian, R., et al., 2009. Lakes as sentinels of climate change. Limnology and Oceanography, 54 (6, part2), 2283–2297. doi:10.4319/lo.2009.54.6_part_2.2283
  • Akitomo, K., Kurogi, M., and Kumagai, M., 2004. Numerical study of a thermally induced gyre system in Lake Biwa. Limnology, 5 (2), 103–114. doi:10.1007/s10201-004-0122-9
  • Akitomo, K., Tanaka, K., and Kumagai, M., 2009a. Annual cycle of circulations in Lake Biwa, part 2: mechanisms. Limnology, 10 (2), 119–129. doi:10.1007/s10201-009-0268-6
  • Akitomo, K., et al., 2009b. Annual cycle of circulations in Lake Biwa, part 1: model validation. Limnology, 10 (2), 105–118. doi:10.1007/s10201-009-0267-7
  • Amadori, M., et al., 2021. Multi-scale evaluation of a 3D lake model forced by an atmospheric model against standard monitoring data. Environmental Modelling and Software, 139, 105017. doi:10.1016/j.envsoft.2021.105017
  • Ambrosetti, W. and Barbanti, L., 1999. Deep water warming in lakes: an indicator of climate change. Journal of Limnology, 58 (1), 1–9. doi:10.4081/jlimnol.1999.1
  • Arai, T., 1962. On the distribution of monthly mean bowen’s ratio for Inland and coastal sea waters in Japan. Journal of Agricultural Meteorology, 18 (2), 66–74. doi:10.2480/agrmet.18.66
  • Arai, T., 2009. Climate change and variations in the water temperature and ice cover of inland waters. Japanese Journal of Limnology, 70, 99–116.
  • Arhonditsis, G.B., et al., 2004. Effects of climatic variability on the thermal properties of Lake Washington. Limnology and Oceanography, 49 (1), 256–270. doi:10.4319/lo.2004.49.1.0256
  • Binyamin, J., et al., 2006. Surface energy balance calculations for small northern lakes. International Journal of Climatology, 26 (15), 2261–2273. doi:10.1002/joc.1365
  • Colomer, J., Roget, E., and Casamitjana, X., 1996. Daytime heat balance for estimating non‐radiative fluxes of Lake Banyoles, Spain. Hydrological Processes, 10 (5), 721–726. doi:10.1002/(SICI)1099-1085(199605)10:5<721::AID-HYP314>3.0.CO;2-0
  • Desai, A.R., et al., 2009. Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nature Geoscience, 2 (12), 855–858. doi:10.1038/ngeo693
  • Duan, Z. and Bastiaanssen, W.G.M., 2015. A new empirical procedure for estimating intra-annual heat storage changes in lakes and reservoirs: review and analysis of 22 lakes. Remote Sensing of Environment, 156, 143–156. doi:10.1016/j.rse.2014.09.009
  • Endoh, S. and Okumura, Y., 1993. Gyre system in Lake Biwa derived from recent current measurements. Japanese Journal of Limnology, 54 (3), 191–197.
  • Ficker, H., Luger, M., and Gassner, H., 2017. From dimictic to monomictic: empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshwater Biology, 62 (8), 1335–1345. doi:10.1111/fwb.12946
  • Foley, B., et al., 2012. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biology, 57 (2), 278–289. doi:10.1111/j.1365-2427.2011.02662.x
  • Garvine, R.W., 1999. Penetration of buoyant coastal discharge onto the continental shelf: a numerical model experiment. Journal of Physical Oceanography, 29 (8), 1892–1909. doi:10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2
  • Gent, P.R. and Mcwilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20 (1), 150–155. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
  • Gill, A.E., 1982. Atmosphere-ocean dynamics. San Diego: Academic Press.
  • Haga, H., et al., 2007. Echosounding observations of coverage, height, PVI, and biomass of submerged macrophytes in the southern basin of Lake Biwa, Japan. Limnology, 8 (2), 95–102. doi:10.1007/s10201-006-0200-2
  • Hirose, N., 2011. Inverse estimation of empirical parameters used in a regional ocean circulation model. Journal of Oceanography, 67 (3), 323–336. doi:10.1007/s10872-011-0041-4
  • Hirose, N., et al., 2007. Sequential forecasting of the surface and subsurface conditions in the Japan Sea. Journal of Oceanography, 63 (3), 467–481. doi:10.1007/s10872-007-0042-5
  • Hirose, N., et al., 2017. Numerical simulation of the abrupt occurrence of strong current in the southeastern Japan Sea. Continental Shelf Research, 143, 194–205. doi:10.1016/j.csr.2016.07.005
  • Hirose, N., Kim, C.H., and Yoon, J.H., 1996. Heat budget in the Japan Sea. Journal of Oceanography, 52 (5), 553–574. doi:10.1007/BF02238321
  • Ikebuchi, S., Seki, M., and Ohtoh, A., 1988. Evaporation from Lake Biwa. Journal of Hydrology, 102 (1–4), 427–449. doi:10.1016/0022-1694(88)90110-2
  • Ishizaki, H. and Motoi, T., 1999. Reevaluation of the takano–oonishi scheme for momentum advection on bottom relief in ocean models. Journal of Atmospheric and Oceanic Technology, 16 (12), 1994–2010. doi:10.1175/1520-0426(1999)016<1994:ROTTOS>2.0.CO;2
  • Ito, N., 1960. On the evaporation from a few Lakes in Japan. Journal of the Meteorological Society of Japan, 38 (4), 200–206. Ser. II. doi:10.2151/jmsj1923.38.4_200
  • Ito, Y. and Momii, K., 2015. Impacts of regional warming on long‐term hypolimnetic anoxia and dissolved oxygen concentration in a deep lake. Hydrological Processes, 29 (9), 2232–2242. doi:10.1002/hyp.10362
  • Jeon, C., Park, J.H., and Park, Y.G., 2019. Temporal and spatial variability of near‐inertial waves in the East/Japan sea from a high‐resolution wind‐forced ocean model. Journal of Geophysical Research: Oceans, 124 (8), 6015–6029. doi:10.1029/2018JC014802
  • Kawamura, H., Yoon, J.H., and Ito, T., 2007. Formation rate of water masses in the Japan Sea. Journal of Oceanography, 63 (2), 243–253. doi:10.1007/s10872-007-0025-6
  • Kawanabe, H., Nishino, M., and Maehata, M., eds., 2012. Lake Biwa: interactions between nature and people. Springer Science & Business Media.
  • Keijman, J.Q., 1974. The estimation of the energy balance of a lake from simple weather data. Boundary-Layer Meteorology, 7 (3), 399–407. doi:10.1007/BF00240841
  • Kim, C.H. and Yoon, J.H., 1999. A numerical modeling of the upper and the intermediate layer circulation in the East Sea. Journal of Oceanography, 55 (2), 327–345. doi:10.1023/A:1007837212219
  • Kitazawa, D., 2011. Numerical simulation of long-term changes in water quality in deep lakes. Seisan Kenkyu, 63 (1), 65–68.
  • Kitazawa, D., Kumagai, M., and Hasegawa, N., 2010. Effects of internal waves on dynamics of hypoxic waters in Lake Biwa. Journal of the Korean Society for Marine Environment & Energy, 13 (1), 30–42.
  • Kitazawa, D., et al., 2018. Comparative study on vertical circulation in deep lakes: Lake Biwa and Lake Ikeda. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), 1–4.
  • Komatsu, T., Fukushima, T., and Harasawa, H., 2007. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling, 209 (2–4), 351–366. doi:10.1016/j.ecolmodel.2007.07.021
  • Kondo, J., 1975. Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorology, 9 (1), 91–112. doi:10.1007/BF00232256
  • Kondo, J. and Watanabe, T., 1992. Studies on the bulk transfer coefficients over a vegetated surface with a multilayer energy budget model. Journal of the Atmospheric Sciences, 49 (23), 2183–2199. doi:10.1175/1520-0469(1992)049<2183:SOTBTC>2.0.CO;2
  • Koreeda, N., et al., 2003. Applicability of JMA-MSM-GPV to river basin risk management and disaster measures. Proceedings of Hydraulic Engineering, 47, 91–96. doi:10.2208/prohe.47.91
  • Koue, J., et al., 2018a. Evaluation of thermal stratification and flow field reproduced by a three-dimensional hydrodynamic model in Lake Biwa, Japan. Water, 10 (1), 47. doi:10.3390/w10010047
  • Koue, J., et al., 2018b. Numerical analysis of sensitivity of structure of the stratification in Lake Biwa, Japan by changing meteorological elements. Water, 10 (10), 1492. doi:10.3390/w10101492
  • Koue, J., et al., 2018c. Numerical assessment of the impact of strong wind on thermal stratification in Lake Biwa, Japan. International Journal of Geomate, 14 (45), 35–40. doi:10.21660/2018.45.7166
  • Kumagai, M., Maeda, H., and Oonishi, Y., 1986. Vertical circulation and formation of anoxic layer - case study at dredged area in southern basin of Lake Biwa (in Japanese). Japanese Journal of Limnology, 47 (1), 27–35.
  • Lee, H.J., et al., 2003. Comparison of riamom and mom in modeling the East Sea/Japan Sea circulation. Ocean and Polar Research, 25 (3), 287–302. doi:10.4217/OPR.2003.25.3.287
  • Lewis, J. and William, M., 1983. A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences, 40 (10), 1779–1787. doi:10.1139/f83-207
  • Li, M., Zhong, L., and Boicourt, W.C., 2005. Simulations of Chesapeake Bay estuary: sensitivity to turbulence mixing parameterizations and comparison with observations. Journal of Geophysical Research: Oceans, 110 (C12), C12004.
  • Livingstone, D.M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change, 57 (1/2), 205–225. doi:10.1023/A:1022119503144
  • Magee, M.R. and Wu, C.H., 2017. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System Sciences, 21 (12), 6253. doi:10.5194/hess-21-6253-2017
  • Martínez-Alvarez, V., et al., 2011. Simultaneous solution for water, heat and salt balances in a Mediterranean coastal lagoon (Mar Menor, Spain). Estuarine, Coastal and Shelf Science, 91 (2), 250–261. doi:10.1016/j.ecss.2010.10.030
  • Matsumoto, K., Tokos, K.S., and Rippke, J., 2019. Climate projection of Lake Superior under a future warming scenario. Journal of Limnology, 78 (3), 296–309. doi:10.4081/jlimnol.2019.1902
  • Mellor, G.L., 1998. Users guide for a three dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences. Princeton, NJ: Princeton University. http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/ [Accessed 29 Jun 2023].
  • Momii, K. and Ito, Y., 2008. Heat budget estimates for lake Ikeda, Japan. Journal of Hydrology, 361 (3–4), 362–370. doi:10.1016/j.jhydrol.2008.08.004
  • Moon, J.H., et al., 2009. Effect of the along-strait wind on the volume transport through the Tsushima/Korea Strait in september. Journal of Oceanography, 65 (1), 17–29. doi:10.1007/s10872-009-0002-3
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Murphy, A.H. and Epstein, E.S., 1989. Skill scores and correlation coefficients in model verification. Monthly Weather Review, 117 (3), 572–582. doi:10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2
  • Nakada, S., et al., 2021. High-resolution flow simulation in Typhoon 21, 2018: massive loss of submerged macrophytes in Lake Biwa. Progress in Earth and Planetary Science, 8 (1), 1–19. doi:10.1186/s40645-021-00440-9
  • Nakada, S., et al., 2014. Operational ocean prediction experiments for smart coastal fishing. Progress in Oceanography, 121, 125–140. doi:10.1016/j.pocean.2013.10.008
  • Nakada, S., et al., 2013. An integrated approach to the heat and water mass dynamics of a large bay: high‐resolution simulations of Funka Bay, Japan. Journal of Geophysical Research: Oceans, 118 (7), 3530–3547. doi:10.1002/jgrc.20262
  • Nakada, S., et al., 2012. Modeling runoff into a region of freshwater influence for improved ocean prediction: application to Funka Bay. Hydrological Research Letters, 6, 47–52. doi:10.3178/hrl.6.47
  • Nakada, S., et al., 2010. A study of the dynamic factors of the summer-time upwelling in the Tsushima warm current region. Deep Sea Research Part II: Topical Studies in Oceanography, 57 (19–20), 1799–1808. doi:10.1016/j.dsr2.2010.04.006
  • Noh, Y., Min, H.S., and Raasch, S., 2004. Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir circulation. Journal of Physical Oceanography, 34 (4), 720–735. doi:10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2
  • North, R.P., et al., 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Global Change Biology, 20 (3), 811–823. doi:10.1111/gcb.12371
  • O’Reilly, C.M., et al., 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 424 (6950), 766–768. doi:10.1038/nature01833
  • Obata, A., Ishizaka, J., and Endoh, M., 1996. Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. Journal of Geophysical Research: Oceans, 101 (C9), 20657–20667. doi:10.1029/96JC01734
  • Piccolroaz, S., et al., 2019. Importance of planetary rotation for ventilation processes in deep elongated lakes: evidence from Lake Garda (Italy). Scientific Reports, 9 (1), 8290. doi:10.1038/s41598-019-44730-1
  • Piccolroaz, S. and Toffolon, M., 2018. The fate of Lake Baikal: how climate change may alter deep ventilation in the largest lake on Earth. Climatic Change, 150 (3–4), 181–194. doi:10.1007/s10584-018-2275-2
  • Reed, R.K., 1977. On estimating insolation over the ocean. Journal of Physical Oceanography, 7 (3), 482–485.e. doi:10.1175/1520-0485(1977)007<0482:OEIOTO>2.0.CO;2
  • Rouse, W.R., et al., 2003. Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. Journal of Hydrometeorology, 4 (4), 720–730. doi:10.1175/1525-7541(2003)004<0720:IASVOT>2.0.CO;2
  • Sahoo, G.B., Schladow, S.G., and Reuter, J.E., 2013. Hydrologic budget and dynamics of a large oligotrophic lake related to hydro-meteorological inputs. Journal of Hydrology, 500, 127–143. doi:10.1016/j.jhydrol.2013.07.024
  • Sasajima, Y.I., et al., 2007. Structure of the subsurface counter current beneath the Tsushima warm current simulated by an ocean general circulation model. Journal of Oceanography, 63 (6), 913–926. doi:10.1007/s10872-007-0077-7
  • Sato, Y., et al., 2011. Construction and validation of Lake Biwa basin simulation model with integration of three components of land, Lake flow, and Lake ecosystem. Journal of Japan Society on Water Environment, 34 (9), 125–141. doi:10.2965/jswe.34.125
  • Shatwell, T., Thiery, W., and Kirillin, G., 2019. Future projections of temperature and mixing regime of European temperate lakes. Hydrology and Earth System Sciences, 23 (3), 1533–1551. doi:10.5194/hess-23-1533-2019
  • Smedstad, O.M., et al., 2003. An operational eddy resolving 1/16 global ocean nowcast/forecast system. Journal of Marine Systems, 40, 341–361. doi:10.1016/S0924-7963(03)00024-1
  • Stetler, J.T., et al., 2021. Atmospheric stilling and warming air temperatures drive long-term changes in lake stratification in a large oligotrophic lake. Limnology and Oceanography, 66 (3), 954–964. doi:10.1002/lno.11654
  • Suda, K., 1926. The report of limnological observation in Lake Biwa-ko (I). Bull Kobe Marine Obs, 8, 1–103.
  • Swann, G.E.A., et al., 2020. Changing nutrient cycling in Lake Baikal, the world’s oldest lake. Proceedings of the National Academy of Sciences, 117 (44), 27211–27217. doi:10.1073/pnas.2013181117
  • Talling, J.F., 2001. Environmental controls on the functioning of shallow tropical lakes. Hydrobiologia, 458 (1–3), 1–8. doi:10.1023/A:1013121522321
  • Taniguchi, M., et al., 2000. Stable isotope studies of precipitation and river water in the Lake Biwa basin, Japan. Hydrological Processes, 14 (3), 539–556. doi:10.1002/(SICI)1099-1085(20000228)14:3<539::AID-HYP953>3.0.CO;2-L
  • Valerio, G., et al., 2015. Sensitivity of the multiannual thermal dynamics of a deep pre‐alpine lake to climatic change. Hydrological Processes, 29 (5), 767–779. doi:10.1002/hyp.10183
  • Wang, M., et al., 2021. Changes in the lake thermal and mixing dynamics on the Tibetan Plateau. Hydrological Sciences Journal, 66 (5), 838–850. doi:10.1080/02626667.2021.1887487
  • Woolway, R.I., et al., 2017. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Climatic Change, 141 (4), 759–773. doi:10.1007/s10584-017-1909-0
  • Woolway, R.I. and Merchant, C.J., 2019. Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12 (4), 271–276. doi:10.1038/s41561-019-0322-x
  • Xing, Z., et al., 2012. Water and heat budgets of a shallow tropical reservoir. Water Resources Research, 48 (6), 6. doi:10.1029/2011WR011314
  • Yamada, K., et al., 2021. First observation of incomplete vertical circulation in Lake Biwa. Limnology, 22 (2), 179–185. doi:10.1007/s10201-021-00653-3
  • Yankova, Y., et al., 2017. Abrupt stop of deep water turnover with lake warming: drastic consequences for algal primary producers. Scientific Reports, 7 (1), 1–9. doi:10.1038/s41598-017-13159-9
  • Yoshida, T., et al., 2018. Numerical simulation of overturn in Lake Biwa and its relation to climate change. Seisan Kenkyu, 70 (1), 25–28.
  • Yoshimizu, C., et al., 2010. Vulnerability of a large monomictic lake (Lake Biwa) to warm winter event. Limnology, 11 (3), 233–239. doi:10.1007/s10201-009-0307-3