204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of climate-change impacts on the temporal and spatial behaviour of drought in South-Central Chile

, ORCID Icon &
Pages 165-184 | Received 27 Jan 2023, Accepted 30 Oct 2023, Published online: 02 Jan 2024

References

  • Abbaspour, K.C., 2014. Swat-Cup 2012: SWAT calibration and uncertainty program—A user manual. Eawag: Swiss Federal Institute of Aquatic Science and Technology.
  • Abbaspour, K.C., et al. 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. doi:10.1016/j.jhydrol.2015.03.027.
  • Aguayo, M., Stehr, A., and Link, O., 2016. Respuesta hidrológica de una cuenca de meso escala frente a futuros escenarios de expansión forestal. Revista de Geografia Norte Grande, 65 (65), 197–214. doi:10.4067/s0718-34022016000300010.
  • Alvarez-Garreton, C., et al. 2018. The CAMELS-CL dataset: catchment attributes andmeteorology for large sample studies – Chile dataset. Hydrology and Earth System Sciences, 22 (11), 5817–5846. doi:10.5194/hess-22-5817-2018.
  • Alvarez-Garreton, C., et al. 2021. Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrology and Earth System Sciences, 25 (1), 429–446. doi:10.5194/hess-25-429-2021.
  • Armesto, J., Arroyo, M., and Hinojosa Opazo, L. 2007. The Mediterranean environment of Central Chile. Available from: https://repositorio.uchile.cl/handle/2250/120061 [ Accessed 1 Sep 2021].
  • Arnold, J.G., et al. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x.
  • Arnold, J.G., et al. 2012. SWAT 2012 input/output documentation. Available from: https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf [ Accessed 01 Dec 2022].
  • Bariamis, G. and Baltas, E., 2021. Hydrological modeling in agricultural intensive watershed: the case of upper east fork white river, USA. Hydrology, 8 (3), 137. doi:10.3390/hydrology8030137.
  • Barría, P., et al. 2021. Water allocation under climate change: a diagnosis of the Chilean system. Elementa: Science of the Anthropocene, 9 (1). doi:10.1525/elementa.2020.00131.
  • Bin Luhaim, Z., et al. 2021. Drought variability and characteristics in the muda river basin of Malaysia from 1985 to 2019. Atmosphere, 12 (9), 1–19. doi:10.3390/atmos12091210.
  • Boisier, J.P., et al. 2018. CR2MET: a high-resolution precipitation and temperature dataset for hydroclimatic research in Chile. In: Geophysical Research Abstracts. EGU General Assembly.
  • Bozkurt, D., et al. 2018. Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios. Climatic Change, 150 (3–4), 131–147. doi:10.1007/s10584-018-2246-7.
  • Cibin, R., Sudheer, K.P., and Chaubey, I., 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes, 24 (9), 1133–1148. doi:10.1002/hyp.7568.
  • CIREN, 1997. Estudio agrológico VIII Región. Chile: Natural Resources Information Center.
  • CIREN, 1999. Estudio agrológico VII Región. Chile: Natural Resources Information Center.
  • CIREN, 2002. Estudio agrológico IX Región. Chile: Natural Resources Information Center.
  • CONAF, 2021. Territorial information system [online]. National Forestry Corporation of Chile (CONAF). Available from: https://sit.conaf.cl/ [ Accessed 5 May 2021].
  • Cramér, H., 1928. On the composition of elementary errors. Scandinavian Actuarial Journal, 1928 (1), 13–74. doi:10.1080/03461238.1928.10416862.
  • Danandeh Mehr, A., et al. 2020. Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. Hydrological Sciences Journal, 65 (2), 254–268. doi:10.1080/02626667.2019.1691218.
  • DGA, 2004a. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad, Cuenca del río Itata. Chilean Water Directorate (DGA). Available from: https://mma.gob.cl/wp-content/uploads/2017/12/Itata.pdf [ Accessed 1 Dec 2022].
  • DGA, 2004b. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad, Cuenca del río Maule. Available from: https://mma.gob.cl/wp-content/uploads/2017/12/Maule.pdf [ Accessed 1 Dec 2022].
  • DGA, 2004c. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad, Cuenca del río Biobío. Available from: https://mma.gob.cl/wp-content/uploads/2017/12/Biobío.pdf [ Accessed 1 Dec 2022].
  • DGA, 2016. Atlas del Agua Chile 2016. Available from: https://snia.mop.gob.cl/sad/Atlas2016parte1.pdf. [ Accessed 1 Dec 2022].
  • DGA, 2017a. Actualización del Balance Hídrico Nacional. Available from: https://snia.mop.gob.cl/sad/REH5796v1.pdf [ Accessed 15 May 2021].
  • DGA, 2017b. Estimación de la demanda actual, proyecciones futuras y caracterización de la calidad de los recursos hídricos en Chile. Available from: https://dga.mop.gob.cl/Estudios/04%20Resumen%20Ejecutivo/Resumen%20Ejecutivo.pdf [ Accessed 1 Dec 2022].
  • DGA, 2018. Aplicación de la metodología de actualización del balance hídrico nacional en las cuencas de las macrozonas norte y centro. Available from: https://snia.mop.gob.cl/sad/REH5850v4.pdf [ Accessed 1 Dec 2021].
  • DGA, 2021a. National Water Cadastre [online]. Chilean Water Directorate (DGA). Available from: https://dga.mop.gob.cl/productosyservicios/derechos_historicos/Paginas/default.aspx [ Accessed 5 May 2021].
  • DGA, 2021b. Plan Estratégico de Gestión Hídrica en la Cuenca del Biobío. Available from: https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/125626 [ Accessed 1 Dec 2021].
  • FAO & UNESCO, 1971. Soil Map of the World 1: 5.000.000. Paris, France: Agriculture Organization of the United Nations and United Nations Educational.
  • Galleguillos, M., et al. 2021. Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations. Journal of Hydrology, 595, 126047. doi:10.1016/j.jhydrol.2021.126047.
  • Giri, S., et al. 2021. Meteorological and hydrological drought analysis and its impact on water quality and stream integrity. Sustainability, 13 (15), 1–24. doi:10.3390/su13158175.
  • Guppy, L. and Anderson, K., 2017. Water crisis report. Hamilton, Canada: United Nations University Institute for Water, Environment and Health. Available from: https://inweh.unu.edu/wp-content/uploads/2017/11/Global-Water-Crisis-The-Facts.pdf [ Accessed 1 Dec 2022].
  • Hao, Y., et al. 2018. Assessment of changes in water balance components under 1.5°C and 2.0°C global warming in transitional climate basin by multi-RCPs and multi-GCMs approach. Water, 10 (12), 1863. doi:10.3390/w10121863.
  • Hargreaves, G. and Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1 (2), 96–99. doi:10.13031/2013.26773.
  • Huang, Y.F., et al. 2016. Drought forecasting using SPI and EDI under RCP-8.5 climate change scenarios for Langat River Basin, Malaysia. Procedia Engineering, 154, 710–717. doi:10.1016/j.proeng.2016.07.573.
  • INE, 2007. VII Censo Agropecuario y Forestal 2007, resultados preliminares 20062007. Santiago, Chile: National Institute of Statistics.
  • IPCC, 2014. Climate change 2014: synthesis report. In: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781139177245.003
  • IPCC, 2021. Climate change 2021: the physical science basis. Working Group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press. doi:10.1017/9781009157896.
  • Jana, P., et al. 2018. Drought periods during 18th century in central Chile (33°S): a historical reconstruction perspective revisiting Vicuña Mackenna’s work. International Journal of Climatology. doi:10.1002/joc.5884.
  • Kendall, M.G., 1975. Rank correlation methods. London, UK: Griffin.
  • Li, Y., et al. 2021. Meteorological and hydrological droughts in Mekong River Basin and surrounding areas under climate change. Journal of Hydrology: Regional Studies, 36, 100873. doi:10.1016/j.ejrh.2021.100873.
  • Lorenzo-Lacruz, J., et al. 2013. Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. Hydrology and Earth System Sciences, 17 (1), 119–134. doi:10.5194/hess-17-119-2013.
  • Mahdavi, P., et al. 2021. Drought occurrence under future climate change scenarios in the Zard River basin, Iran. Water Supply, 21 (2), 899–917. doi:10.2166/ws.2020.367.
  • Mann, H.B., 1945. Nonparametric tests against trend. Econometrica, 13 (3), 245–259. doi:10.2307/1907187.
  • Martínez-Retureta, R., et al. 2020. Effect of land use/cover change on the hydrological response of a southern center basin of Chile. Water, 12 (1), 1–21. doi:10.3390/w12010302.
  • Martínez-Retureta, R., et al. 2021. Estimation of the climate change impact on the hydrological balance in basins of south-central Chile. Water, 13 (6), 794. doi:10.3390/w13060794.
  • McKee, T., Doesken, N., and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. Conference on Applied Climatology, Anaheim, 179–184.
  • MINAGRI, 2021. Coyuntura agroclimática. Chile: Institutional Management Department-Chilean Ministry of Agriculture.
  • Moriasi, D.N., et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153.
  • Naumann, G., et al. 2021. Increased economic drought impacts in Europe with anthropogenic warming. Nature Climate Change, 11 (6), 485–491. doi:10.1038/s41558-021-01044-3.
  • NDMC, 2018. Downloadable SPI program. Nebraska-Lincoln: National Drought Mitigation Center. Available from: https://drought.unl.edu/Monitoring/SPI/SPIProgram.aspx [ Accessed 1 Dec 2021].
  • Núñez Cobo, J. and Verbist, K., 2018. Atlas de Sequía de América Latina y el Caribe. UNESCO and CAZALAC, 204. Available from: http://dgf.uchile.cl/rene/PUBS/AtlasSequia_latam_UNESCO.pdf [ Accessed 1 Dec 2021].
  • ODEPA, 2019. Chilean agriculture overview. Office of Agrarian Studies and Policies (ODEPA) - Chilean Ministry of Agriculture.
  • ODEPA, 2022. Agua y Recursos Hídricos: agenda del Ministerio de Agricultura en el marco del desarrollo sustentable del sector silvoagropecuario. Office of Agrarian Studies and Policies (ODEPA) - Chilean Ministry of Agriculture.
  • Oertel, M., et al. 2018. Drought propagation in semi-arid river basins in Latin America: lessons from Mexico to the Southern Cone. Water, 10 (11), 1–21. doi:10.3390/w10111564.
  • Oertel, M., Meza, F.J., and Gironás, J., 2019. Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile. Hydrological Processes, 34 (2), 159–174. doi:10.1002/hyp.13596.
  • Omer, A., et al. 2020. Water scarcity in the Yellow River Basin under future climate change and human activities. Science of the Total Environment, 749, 141446. doi:10.1016/j.scitotenv.2020.141446.
  • Orlowsky, B. and Seneviratne, S.I., 2013. Elusive drought: uncertainty in observed trends and short-and long-term CMIP5 projections. Hydrology and Earth System Sciences, 17 (5), 1765–1781. doi:10.5194/hess-17-1765-2013.
  • Penedo-Julien, S., et al. 2018. Hydrological modeling to assess runoff in a semi-arid andean headwater catchment for water management in Central Chile. Andean Hydrology, 231–253. doi:10.1201/9781315155982-10.
  • Petpongpan, C., Ekkawatpanit, C., and Kositgittiwong, D., 2020. Climate change impact on surface water and groundwater recharge in northern Thailand. Water, 12 (4), 1029. doi:10.3390/W12041029.
  • Pica-Téllez, A., et al. 2020. Informe Proyecto ARClim: atlas de Riesgos Climáticos para Chile. Centro de Ciencia del Clima y la Resiliencia, Centro de Cambio Global UC y Meteodata for the Chilean Ministry of the Environment through Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ). Santiago, Chile. Available from: https://www.cr2.cl/wp-content/uploads/2021/03/Informe_ARCLIM_Consolidado.pdf [Accessed 22 Dec 2023].
  • Salmi, T., et al. 2002. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates. In: The Excel Template Application MAKESENS. Helsinki: Finnish Meteorological Institute, Publications on Air Quality No. 31.
  • Sarricolea Espinoza, P.A. and Meseguer-Ruiz, O., 2015. Sequías en Chile central a partir de diferentes índices en el período 1981–2010. Investigaciones Geográficas, 32 (50), 19. doi:10.5354/0719-5370.2015.41178.
  • Shen, S., et al. 2020. The coupling impact of climate change on streamflow complexity in the headwater area of the northeastern Tibetan Plateau across multiple timescales. Journal of Hydrology, 588, 124996. doi:10.1016/j.jhydrol.2020.124996.
  • Stehr, A., et al. 2008. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrological Sciences Journal, 53 (3), 588–601. doi:10.1623/hysj.53.3.588.
  • Stehr, A., et al. 2010. Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning. Hydrology and Earth System Sciences, 14 (10), 1963–1977. doi:10.5194/hess-14-1963-2010.
  • Sutanto, S. and Van Lanen, H., 2020. Streamflow drought: implication of drought definitions and its application for drought forecasting. Hydrology and Earth System Sciences Discussions, 1–29. doi:10.5194/hess-2020-458.
  • Svoboda, M., Fuchs, B., and Integrated Drought Management Programme (IDMP). 2017. Handbook of drought indicators and indices. Drought Mitigation Center Faculty Publications, 117. Available from: http://digitalcommons.unl.edu/droughtfacpub/117 [Accessed 22 Dec 2023].
  • Tijdeman, E., Stahl, K., and Tallaksen, L.M., 2020. Drought characteristics derived based on the standardized streamflow index: a large sample comparison for parametric and nonparametric methods. Water Resources Research, 56, e2019WR02631. doi:10.1029/2019WR026315.
  • Trenberth, K.E., et al. 2014. Global warming and changes in drought. Nature Climate Change, 4 (1), 17–22. doi:10.1038/nclimate2067.
  • USDA-SCS, 1972. National engineering handbook. Section 4: hydrology. Washington, DC: Department of Agriculture, 762.
  • Vicente-Serrano, S.M., et al. 2012a. Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17 (2), 318–332. doi:10.1061/(ASCE)HE.1943-5584.0000433.
  • Vicente-Serrano, S.M., et al. 2012b. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16 (10), 1–27. doi:10.1175/2012EI000434.1.
  • Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23 (7), 1696–1718. doi:10.1175/2009JCLI2909.1.
  • Von Mises, R., 1931. Vorlesungen aus dem Gebiete der Angewandten Mathematik: wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und Theoretischen Physik. Vienna, Austria: F. Deuticke.
  • Wang, J., et al. 2021. Propagation from meteorological to hydrological drought and its influencing factors in the Huaihe river basin. Water, 13 (14). doi:10.3390/w13141985.
  • WMO, 2006. Drought monitoring and early warning: concepts, progress and future challenges. Geneva: World Meteorological Organization. 1006.
  • WMO, 2012. Standardized precipitation index user guide. Available from: https://www.droughtmanagement.info/literature/WMO_standardized_precipitation_index_user_guide_en_2012.pdf [ Accessed 1 Dec 2022].
  • WMO and GWP, 2016. Handbook of drought indicators and indices. Available from: https://library.wmo.int/doc_num.php?explnum_id=3057 [ Accessed 1 Dec 2022].
  • Wu, J., et al. 2021. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Science of the Total Environment, 765, 144232. doi:10.1016/j.scitotenv.2020.144232.
  • Yuan, F., et al. 2016. Possible future climate change impacts on the hydrological drought events in the weihe river basin, China. Advances in Meteorology, 905198. doi:10.1155/2016/2905198.
  • Zhao, P., et al. 2019. Impacts of climate change on hydrological droughts at basin scale: a case study of the Weihe River Basin, China. Quaternary International, 513, 37–46. doi:10.1016/j.quaint.2019.02.022.
  • Zou, L., et al. 2018. Identification of hydrological drought in Eastern China using a time-dependent drought index. Water, 10 (3), 315. doi:10.3390/w10030315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.